15-251: Great Theoretical Ideas In Computer Science Recitation 12

Definitions

- **Group.** Abuse of notation: Instead of saying (G, \circ) is a group, we often say G is a group under \circ , or just G is a group (especially if the operation is unimportant or obvious from context)
- Subgroup. Let G be a group. H is a subgroup of G (H ≤ G) if H ⊆ G and H is a group. H is a proper subgroup of G if H ⊊ G.
- Field. A field is a set F equipped with two operations $+, \times$ such that S forms an abelian (commutative) group under +, and $F \setminus \{0\}$ forms an abelian group under \times where '0' is the identity of + (a.k.a the additive identity). Also, multiplication should distribute over addition : $\forall x, y, z \in F, x \times (y + z) = x \times y + x \times z$
- **Reed-Solomon Encoding.** If Alice has a message of d+1 elements of field F, she can think of it as the coefficients of a degree-d polynomial P(X), and encode P(X) using its values representation. To guard against at most k erasures, she can send d + k + 1 symbols; if there are up to k corruptions, she can send d + 2k + 1 symbols.

GCD

Suppose a and b are integers, with a = bq + r, where $0 \le r < b$. Prove that GCD(a, b) = GCD(b, r).

Prime Time

Let G be a group of prime order p. Prove that G has no non-trivial subgroups.

Fields are Meta

Let F be \mathbb{Z}_7 - this is the unique field of size 7, up to isomorphism. Let S be the set of polynomials over F with degree at most 2.

- (a) What is the size of S?
- (b) Verify that S is a field under addition and multiplication modulo $x^3 2$.

BONUS: Subgroup discussion

- (a) Let G be a group, and let H_1, H_2 be nontrivial subgroups of G. Prove that $H_1 \cup H_2 \neq G$
- (b) Does there exist a group G with proper subgroups H_1, H_2, H_3 such that $G = H_1 \cup H_2 \cup H_3$?