15-251: Great Theoretical Ideas In Computer Science

Recitation 14

Lecture Review

- Multiplicative set of integers modulo $N: \mathbb{Z}_{N}^{*}=\left\{A \in \mathbb{Z}_{N}: \operatorname{gcd}(A, N)=1\right\}$
- Totient function: Euler's totient function, denoted $\phi(N)$, is the number of integers in the set \mathbb{Z}_{N} that are relatively prime to $N . \phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$.
- Fast modular exponentiation: To compute $A^{E} \bmod N$, repeatedly square A, always $\bmod N$. Multiply together the powers of A corresponding to the binary digits of E, again, always $\bmod N$.

Diffie Hellman

Recall the Diffie-Hellman protocol for securely generating a secret key over a public communication channel:

$$
\begin{array}{rrr}
\text { Apoorva } & \text { Bhagwat } \\
\text { Picks a large prime } P & (1) & \\
\text { Picks a generator } B \in \mathbb{Z}_{P}^{*} & (2) & \\
\text { Randomly draws } E_{1} \in \mathbb{Z}_{\phi(P)} & (3) & \\
\text { Computes } B^{E_{1}} \in \mathbb{Z}_{P}^{*} & (4) & \text { Receives } P, B, B^{E_{1}} \\
\text { Sends } P, B, B^{E_{1}} & (5) & \text { Randomly draws } E_{2} \in \mathbb{Z}_{\phi(P)} \\
& (6) & \text { Computes } B^{E_{2}} \in \mathbb{Z}_{P}^{*} \\
& (7) & \text { Sends } B^{E_{2}} \tag{9}\\
\text { Receives } B^{E_{2}} & (8) & \text { Computes }\left(B^{E_{1}}\right)^{E_{2}}=B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*}
\end{array}
$$

- In line 2 , why must B be a generator?
- In lines 3 and 5 , why are the random exponents chosen from the set $\mathbb{Z}_{\phi(P)}$?
- Lines 4,6 , and 9 involve modular exponentiation. How can we accomplish this efficiently?
- An eavesdropper can obtain $B, B^{E_{1}}, B^{E_{2}} \in \mathbb{Z}_{P}^{*}$. Can she efficiently recover $B^{E_{1} E_{2}}$?
- Why is this protocol useful?

Does it break?

Assume we have the RSA problem with (E, N) being the public key and (D, N) the private key, where D is a renaming of E^{-1} from lecture. Further assume $N=P Q$ where P and Q are odd primes with $P<Q$. We will denote a message by M and the ciphertext by $C=M^{E} \bmod N$. Determine if the information given is enough to crack RSA efficiently.
(a) You are given $\phi(N)$ and the public key.
(b) You are given $Q^{-1} \bmod P, P^{-1} \bmod Q$ and the public key.
(c) You are given $Q, P^{-1} \bmod Q$ and E.
(d) You are given $P, Q, D \bmod (P-1)$ and $D \bmod (Q-1)$ (no public key).

ElGamal

The ElGamal encryption system is a way of using the Diffie-Hellman protcol to exchange encrypted messages. Suppose Apoorva wants to send a message M to Bhagwat.

Apoorva	Bhagwat	
	(1)	Picks a large prime P
	(2)	Picks a generator $B \in \mathbb{Z}_{P}^{*}$
	(3)	Randomly draws $E_{1} \in \mathbb{Z}_{\phi(P)}$
Receives $P, B, B^{E_{1}}$	(5)	Computes $B^{E_{1}} \in \mathbb{Z}_{P}^{*}$
Rands $P, B, B^{E_{1}}$		
Encode M as an element of \mathbb{Z}_{P}^{*}	(5)	
Computes $B^{E_{2}}, M B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*}$	(8)	Receives $\left(B^{E_{2}}, M B^{E_{1} E_{2}}\right)$
Sends $\left(B^{E_{2}}, M B^{E_{1} E_{2}}\right)$	(9)	Computes $\left(B^{E_{2}}\right)^{E_{1}}=B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*}$
	(10)	Computes $\left(B^{E_{1} E_{2}}\right)^{-1} \in \mathbb{Z}_{P}^{*}$
	(11)	Computes $\left(M B^{E_{1} E_{2}}\right)\left(B^{E_{1} E_{2}}\right)^{-1}=M \in \mathbb{Z}_{P}^{*}$

Suppose $P=17, B=3$. Bhagwat sends Apoorva (17,3,6) (line 5) (Note: $6=3^{15}$). Apoorva sends back $(7,1)$ (line 9). What is the decrypted message?

