15-251: Great Theoretical Ideas In Computer Science

Recitation 2

Regular Announcements

- Homework solution sessions: Saturday and Sunday, 1:30 2:30. Check course calendar for rooms.
- Homework resubmissions next Friday; check course policy for details.
- Come talk to us if you had difficulties on Homework 1!

Definitions For All

- **Deterministic Finite Automaton (DFA)**: A DFA M is a machine that reads a finite input one character at a time in one pass, transition from state to state, and ultimately accepts or rejects. Formally, M is a 5-tuple $M=(Q,\Sigma,\delta,q_0,F)$, where
 - -Q is a **finite**, **non-empty** set of states
 - Σ is the **finite**, **non-empty** alphabet
 - $\delta: Q \times \Sigma \to Q$ is the transition function
 - $-q_0 \in Q$ is the starting state
 - $F \subseteq Q$ is the set of accepting states
- **Regular language**: A language L is regular if L = L(M) for some DFA M (M decides L).
- We have shown that if L_1 and L_2 are both regular languages over Σ^* , for some fixed Σ , then the following are all regular.
 - $-\overline{L_1}$
 - $L_1 \cup L_2$
 - L_1 ∩ L_2
 - L_1L_2 (the concatenation of two regular languages)

Odd Ones Out

Draw a DFA that decides the language

 $L = \{x : x \text{ has an even number of 1s and an odd number of 0s} \}$

over the alphabet $\Sigma = \{0, 1\}$.

Adam, I'm Ada!

Show that, if $|\Sigma| > 1$, then

$$L = \{x \mid x \in \Sigma^* \text{ and } x = x^r\}$$

is an irregular language.

Suffering with Suffixes

Given a word w, we say that u is a <u>proper suffix</u> of w if there is $v \neq \epsilon$ such that w = vu. For a language L, define

$$\mathsf{SUFF}(L) = \{ w \in L : \mathsf{no} \mathsf{ proper} \mathsf{ suffix} \mathsf{ of} \; w \mathsf{ is} \mathsf{ in} \; L \}.$$

Show that if L is regular, then so is $\mathsf{SUFF}(L)$, as follows. Give an exact description of a DFA recognizing $\mathsf{SUFF}(L)$, explicitly stating how Q, δ , q_0 and F are defined. Furthermore, briefly explain the reasoning behind your construction. A formal proof of correctness is not needed.

Multiple Multiples (Extra Problem)

Let $\Sigma = \{0, 1\}$. For each $n \ge 1$, define

$$C_n = \{x \in \Sigma^* \mid x \text{ is a binary number that is a multiple of } n\}.$$

Show that C_n is regular for all n.

States For Days (Extra Problem)

For any $n \ge 1$, let

$$\mathcal{R}_n = \{x \mid x \in \{0,1\}^* \text{ and the } n\text{-th symbol from the right is a } 1\}\,.$$

Show that any DFA that accepts \mathcal{R}_n must have at least 2^n states.