These Decidable Definitions Have Undecidable Ends

- A **decider** is a TM that halts on all inputs.
- A language L is **undecidable** if there is no TM M that halts on all inputs such that $M(x)$ accepts if and only if $x \in L$.
- A language A **reduces** to B if it is possible to decide A using an algorithm that decides B as a subroutine. Denote this as $A \leq B$ (read: B is at least as hard as A)

Doesn’t Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, M, M_1, M_2 refer to TMs).

(a) $\text{REGULAR} = \{\langle M \rangle : L(M) \text{ is regular} \}$.

(b) $\text{TOTAL} = \{\langle M \rangle : M \text{ halts on all inputs} \}$.

(c) $\text{DOLORES} = \{\langle M_1, M_2 \rangle : \exists w \in \Sigma^* \text{ such that both } M_1(w) \text{ and } M_2(w) \text{ accept} \}$.

(Extra) Lose All Scripted Responses. Improvisation Only

Let $\text{FINITE} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite} \}$.

Show that $\text{TOTAL} \leq \text{FINITE}$.