15-251: Great Theoretical Ideas In Computer Science

Recitation 4

Announcements

Reminders :

- Midterm 1 Solution Sessions Saturday 1:30-2:30 in GHC 4301 and Sunday 1:30-2:30 in GHC 4215
- Remember to submit answers to the weekly quiz by 9 pm Sunday.

These Decidable Definitions Have Undecidable Ends

- A **decider** is a TM that halts on all inputs.
- A language L is **undecidable** if there is no TM M that halts on all inputs such that M(x) accepts if and only if $x \in L$.
- A language A reduces to B if it is possible to decide A using an algorithm that decides B as a subroutine. Denote this as A ≤ B (read: B is at least as hard as A)

Doesn't Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, M, M_1 , M_2 refer to TMs).

- (a) **REGULAR** = { $\langle M \rangle : L(M)$ is regular}.
- (b) **TOTAL** = { $\langle M \rangle$: *M* halts on all inputs}.
- (c) **DOLORES** = { $\langle M_1, M_2 \rangle$: $\exists w \in \Sigma^*$ such that both $M_1(w)$ and $M_2(w)$ accept}.

(Extra) Lose All Scripted Responses. Improvisation Only

Let **FINITE** = { $\langle M \rangle$: M is a TM and L(M) is finite}. Show that **TOTAL** \leq **FINITE**.