News Post

- No recitation this Friday; expect another large group review session on this week’s material!
- Conceptual OH on Saturdays is a great time to review old material as well as gain greater understanding of new topics and ideas!
- If you have any questions about material, logistics, or anything else 251 related make sure to reach out to your mentor!

New Phrases

- We say a problem is in \(\mathbf{NP} \) if there exists a polynomial time verifier \(\text{TM} \ V \) and a constant \(k > 0 \) such that for all \(x \in \Sigma^* \):

 - if \(x \in L \), then there exists a certificate \(u \) with \(|u| \leq |x|^k \) such that \(V(x, u) \) accepts.

 - if \(x \notin L \), then for all \(u \in \Sigma^* \), \(V(x, u) \) rejects.

- We say there is a polynomial-time many-one reduction from \(A \) to \(B \) if there is a polynomial-time computable function \(f : \Sigma^* \to \Sigma^* \) such that \(x \in A \) if and only if \(f(x) \in B \). We write this as \(A \leq_P B \). (We also refer to these reductions as Karp reductions.)

- A problem \(Y \) is \(\mathbf{NP} \)-hard if for every problem \(X \in \mathbf{NP} \), \(X \leq_P Y \).

- A problem is \(\mathbf{NP} \)-complete if it is both in \(\mathbf{NP} \) and \(\mathbf{NP} \)-hard.

- A Boolean function is one of the form \(f : \{0,1\} \times \{0,1\} \times \cdots \rightarrow \{0,1\} \). They can be thought of as \(n \)-bit truth tables.

- A Boolean circuit with \(n \)-input variables (\(n \geq 0 \)) is a directed acyclic graph where the vertices represent gates and the directed edges represent wires. The circuit has \(n \) input gates each with in-degree 0 and 1 output gate with out-degree 1. In our standard model we include AND, OR, and NOT gates which have in-degree 2 and correspond to their respective binary functions.

- A family of circuits is an infinite sequence \(C_0, C_1, C_2, \ldots \) where \(C_n \) is a circuit with \(n \) input gates

- We say that a family \(C \) decides a language \(L \) if for all \(n \in \mathbb{N} \), \(C_n \) decides \(L_n = L \cap \{0,1\}^n \)

New Point of View

Imagine there existing an untrustworthy, omnipotent (computationally unbounded) Prover who likes to make claims about membership in a language \(L \). On the other hand, you are a Verifier who can merely compute things that run in polynomial time. You are interested in verifying if a string is in \(L \).

The Prover claims to you that a certain \(x \in L \). In order to convince you, the Prover uses its unlimited computational power to provide a polynomial length (with respect to \(x \)) certificate/proof to you. You then use the certificate to verify whether \(x \) is truly in \(L \). If \(L \in \mathbf{NP} \) then

(a) can the Prover convince you for every \(x \in L \) that \(x \) truly is a member of \(L \)?

(b) can the Prover ever fool you into thinking some \(x \in L \) when really \(x \notin L \)?

Conversely if \(L \) is such a language so that Prover can always provide you with polynomial length proofs for \(x \in L \), and is never able to deceive you for \(x \notin L \) then is \(L \in \mathbf{NP} \)?
No Privacy

3COL: Given an undirected graph, can we color the vertices with 3 colors so that no two adjacent vertices share the same color?

Show 3COL is in \textbf{NP}.

Natural Circuits

A language $L \subseteq \{0, 1\}^*$ is called skinny if there is some constant $k > 0$ such that for all $n \in \mathbb{N}$, we have $L \cap \{0, 1\}^n \leq n^k$.

Show that any skinny language can be computed by a polynomial size language family.