
15-251: Great Theoretical Ideas In Computer Science

Recitation 8: Boolean Circuits and NP

News Post
• No recitation this Friday; expect another large group review session on this week’s material!

• Conceptual OH on Saturdays is a great time to review old material as well as gain greater
understanding of new topics and ideas!

• If you have any questions about material, logistics, or anything else 251 related make sure to
reach out to your mentor!

New Phrases
• We say a problem is in NP if there exists a polynomial time verifier TM V and a constant
k > 0 such that for all x ∈ Σ∗:

if x ∈ L, then there exists a certificate u with |u| ≤ |x|k such that V (x, u) accepts.

if x /∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

• We say there is a polynomial-time many-one reduction from A to B if there is a polynomial-
time computable function f : Σ∗ → Σ∗ such that x ∈ A if and only if f(x) ∈ B. We write
this as A ≤P

m B. (We also refer to these reductions as Karp reductions.)

• A problem Y is NP-hard if for every problem X ∈ NP, X ≤P
m Y .

• A problem is NP-complete if it is both in NP and NP-hard.

• A Boolean function is one of the form f : {0, 1}n → {0, 1}. They can be thought of as n-bit
truth tables.

• A Boolean circuit with n-input variables (n ≥ 0) is a directed acyclic graph where the vertices
represent gates and the directed edges represent wires. The circuit has n input gates each with
in-degree 0 and 1 output gate with out-degree 1. In our standard model we include AND, OR,
and NOT gates which have in-degree 2 and correspond to their respective binary functions.

• A family of circuits is an infinite sequence C0, C1, C2, . . . where Cn is a circuit with n input
gates

• We say that a family C decides a language L if for all n ∈ N, Cn decides Ln = L ∩ {0, 1}n

New Point of View

Imagine there existing an untrustworthy, omnipotent (computationally unbounded) Prover who likes
to make claims about membership in a language L. On the other hand, you are a Verifier who can
merely compute things that run in polynomial time. You are interested in verifying if a string is in
L.

The Prover claims to you that a certain x ∈ L. In order to convince you, the Prover uses its
unlimited computational power to provide a polynomial length (with respect to x) certificate/proof
to you. You then use the certificate to verify whether x is truly in L. If L ∈ NP then

(a) can the Prover convince you for every x ∈ L that x truly is a member of L?

(b) can the Prover ever fool you into thinking some x ∈ L when really x 6∈ L?

Conversely if L is such a language so that Prover can always provide you with polynomial length
proofs for x ∈ L, and is never able to deceive you for x 6∈ L then is L ∈ NP?

No Privacy

3COL: Given an undirected graph, can we color the vertices with 3 colors so that no two adjacent
vertices share the same color?

Show 3COL is in NP.

Natural Circuits

A language L ⊆ {0, 1}∗ is called skinny if there is some constant k > 0 such that for all n ∈ N, we
have L ∩ {0, 1}n ≤ nk.

Show that any skinny language can be computed by a polynomial size language family.

