
15-251: Great Theoretical Ideas In Computer Science

Recitation 9 : NP-Hardness and Approximation Algorithms

More or Less Review

• A problem Y is NP-hard if for every problem X ∈ NP, X ≤P
m Y .

• A problem is NP-complete if it is both in NP and NP-hard.

• The goal of an optimization problem is to find the minimum (or maximum) value under some
constraints.

• OPT(I) is the value of the optimal solution to an instance I of an optimization problem.

• We say an algorithm A for an optimization problem is a factor-α approximation if for all
instances I of the problem A outputs a solution that is at least as good as α · OPT(I).

Edge Cover-Up

Let G = (V,E) be a graph. A vertex covering of G is a set C ⊆ V such that for every edge
{x, y} ∈ E, either x ∈ C or y ∈ C (a set of vertices such that every edge is incident to at least one
vertex in the set). An independent set in G is a set S ⊆ V such that for any u, v ∈ S, {u, v} 6∈ E (a
set of vertices such that no edge connects two vertices in the set). Define the following languages:

VERTEX-COVER: {〈G, k〉 : G is a graph, k ∈ N+, G contain a vertex covering of size k}
IND-SET: {〈G, k〉 : G is a graph, k ∈ N+, G contains an independent set of size k}
Show that VERTEX-COVER ≤P

m IND-SET.

Cut and Dried

We define the Max-Cut problem as follows:

Let G = (V,E) be a graph. Given a coloring of the vertices with 2 colors, we say that an edge
e = {u, v} is cut if u and v are colored differently. In the Max-Cut problem, the input is a graph G,
and the output is a coloring of the vertices with 2 colors that maximizes the number of cut edges.

Consider the following approximation algorithm for the Max-Cut problem:

function MaxCutApprox(G = (V,E))
color all vertices red . allowable colors are red and something else (say, blue)
while there exists v ∈ V s.t. changing v’s color increases the number of cut edges do

change the color of v
end while
return coloring

end function

(a) Show that this algorithm is poly-time.

(b) Prove that this algorithm is a 1
2 -approximation for Max-Cut.

(c) Show that this algorithm is not a (12 + ε)-approximation algorithm for Max-Cut for any ε > 0.



Gotta Catch a Lot of ’Em

Consider a set of Pokémon and a set of m trainers each having a subset of these Pokémon. Given an
integer k, the problem is to pick k trainers in a way that maximizes the number of distinct Pokémon
owned among them. This problem will show that there exists a poly-time (1 − 1/e)-approximation
by considering the following greedy algorithm:

function PokémonApprox((S1, S2, . . . , Sm), k)
T ← ∅ . keeps track of trainers we have already picked
U ← ∅ . keeps track of which Pokémon we have already
for 1 ≤ i ≤ k do

j ← argmaxj |Sj − U | . pick the trainer j with the most new Pokémon
T ← T ∪ {j}
U ← U ∪ Sj

end for
return T

end function

(a) Prove that the algorithm runs in poly-time.

(b) Let T ∗ denote the optimum solution, and let U∗ =
⋃

j∈T ∗ Sj . Further, define Ui to be the set

U in the algorithm after the i-th iteration of the loop. Prove that |U∗| − |Ui| ≤ (1− 1
k )

i|U∗|.

(c) Using the inequality 1 + x ≤ ex, deduce that this algorithm is a (1− 1
e )-approximation.

(Extra) Looping Around

Show that the HALTS is NP-hard.

(Bonus) Hard Cut

On the previous page, we defined Max-Cut as an optimization problem. We can also define the
decision version MAX-CUT as follows:

MAX-CUT: {〈G, k〉 : G’s vertices may be colored with two colors in a way that cuts at least k edges}.
Prove that MAX-CUT is NP-hard. This is slightly difficult; try reducing from IND-SET.


