
1

15-251: Great Theoretical Ideas in Computer Science

Graphs: The Basics

Lecture 10

0

1 2

3 4

5

6 7

8 9

0

1 2

3 4

5

6 7

8 9

What

is

a graph?

0

1 2

3 4

5

6 7

8 9

What

n’tisn’t

!a graph?!

What

is

a graph?

2

Facebook

Vertices = people Edges = friendships

Facebook

vertices n ≈ 109 # edges m ≈ 1012

World Wide Web

Vertices = pages Edges = hyperlinks

(“directed graph”)

1998 paper

on PageRank

3

World Wide Web

1998 paper

on PageRank

Today: Perhaps n ≈ 109, m ≈ 1011 ?

Street Maps

Vertices = intersections Edges = streets

Graphs from images

These are “planar” graphs;

drawable with no crossing edges.

4

Register allocation problem

A compiler encounters: temp1 := a+b

temp2 := −temp1

c := temp2+d

6 variables; can it be done with 4 registers?

G. Chaitin (IBM, 1980) breakthrough:

Let variables be vertices. Put edge between

u and v if they need to be live at same time.

The least number of registers needed is the

chromatic number of the graph.

Register allocation problem

A compiler encounters: temp1 := a+b

temp2 := −temp1

c := temp2+d

6 variables; can it be done with 4 registers?

c

temp2

temp1

b

ad

(or something like that)

If your problem has a graph, .

If your problem doesn’t have a graph,

try to make it have a graph.

Computer Science Life Lesson:

5

Warning:

The remainder of the lecture is,

approximately, 100 definitions.

Definitions

Graphs

Directed

Graphs

General

Graphs

1
2

3

4

1
2

3

4

1
2

3

4

“parallel edges”

“self-loops”

(AKA annoying graphs)

Undirected

Simple

Definitions

Graphs

Directed

Graphs

General

Graphs

1
2

3

4

1
2

3

4

1
2

3

4

(AKA annoying graphs)

Undirected

Simple

6

Definitions

A graph G is a pair (V,E) where:

V is the finite set of vertices/nodes;

E is the set of edges.

Each edge e∈E is a pair {u,v},

where u,v∈V are distinct.

Example:

V = {1,2,3,4,5,6}

E = { {1,2}, {1,4}, {2,4}, {3,6}, {4,5} }

Definitions

Example:

V = {1,2,3,4,5,6}

E = { {1,2}, {1,4}, {2,4}, {3,6}, {4,5} }

1
2

4

5

3

6

G = (V,E) can be

drawn like this:

n almost always denotes |V|

m almost always denotes |E|

Notation

7

Question:

Can we have a graph with no edges (m=0)?

Answer:

Yes! For example,

V = {1,2,3,4,5,6}

E = ∅

1
2

4

5

3

6

Edge cases

Called the “empty graph” with n vertices.

(haha)

Question:

Can we have a graph with no

Answer:

Um…… well……

Edge cases

vertices (n=0)?

8

Answer:

It’s to convenient to say no.

We’ll require V ≠ ∅.

Edge cases

One vertex (n = 1) definitely allowed though.

Called the “trivial graph”.
1

Question:

Can we have a graph with no vertices (n=0)?

More terminology

Suppose e = {u,v} ∈ E is an edge.

We say:

u and v are the endpoints of e,

u and v are adjacent,

u and v are incident to e,

u is a neighbor of v,

v is a neighbor of u.

More terminology

v
w

y

z

x

For u ∈ V we define N(u) = {v : {u,v}∈E},

the neighborhood of u.

E.g., in the below graph, N(y) = {v,w,z},

N(z) = {y},

N(x) = ∅.

The degree of u is

deg(u) = |N(u)|.

E.g., deg(y)=3, deg(z) = 1, deg(x) = 0.

9

Theorem:

Let G = (V,E) be a graph. Then .

v

w

y

z

x

2

2

3

1

0
2+2+0+3+1 = 8

= 2·4

✓

Theorem:

Let G = (V,E) be a graph. Then .

v

w

y

z

x

•

2+2+0+3+1 = 8

= 2·4

✓

•
• •

• •
•

•

Remark: Classic “double counting” proof.

Proof of :

Tell each vertex to put a “token” on each edge it’s incident to.

Vertex u places deg(u) tokens. So one hand,

total number of tokens = .

On the other hand, each edge ends up with exactly 2 tokens, so

total number of tokens = 2|E|.

Therefore .

10

Poll:

In an n-vertex graph, what values can m be?

(I.e., what are possibilities for the number of edges?)

m = n

m = n3

m = 1

m = n1.5

m = n2

Poll:

In an n-vertex graph, what values can m be?

(I.e., what are possibilities for the number of edges?)

m = n

m = n3

m = 1

m = n1.5

m = n2

Question:

In an n-vertex graph, how large can m be?

(That is, what is the max number of edges?)

Answer: = = = O(n2)

1

5 2

4 3

E.g.: n = 5, m = = 10.

Called the complete graph

on n vertices. Notation: Kn

11

A bogus “definition”

If m = O(n) we say G is “sparse”.

If m = Ω(n2) we say G is “dense”.

This does not actually make sense.

E.g., if n = 100, m = 1000, is it

sparse or dense? Or neither?

It does make sense if one has a

sequence or family of graphs.

Anyway, it’s handy informal terminology.

Let’s go back to talking about Kn.

This is called being a regular graph.

We say G is d-regular if all nodes have degree d.

For example: Kn is (n−1)-regular;

the empty graph is 0-regular.

What about d-regular for other d?

In Kn, every vertex has the same degree.

1-regular graphs

Possible if and only if |V| is even.

Such a graph is called a perfect matching.

1

2

7

5 6

8

3

4

12

2-regular graphs

1

2

7

5 6

8

2-regular graph is a disjoint collection of cycles.

3

4

Called a 5-cycle

Called a 3-cycle

3-regular graphs

There are lots and lots of possibilities.

0

1 2

3 4

5

6 7

8 9

1

2

3

4

5

6

7

8

A little about “directed graphs”

First, they have a “celebrity couple”-style

nickname, a la:

“Brangelina” “Kimye

13

A little about “directed graphs”

t

p
q

r

s

“Digraph”

Now an edge is an

ordered pair, e = (u,v).

, whereG = (V,E), where:

V = {p,q,r,s,t}

E = { (p,q), (p,r), (q,r),

(r,s), (s,t), (t,s) }

these are

distinct edges

A little about “directed graphs”

t

p
q

r

s

Now there’s out-degree

and in-degree

degin(u) = |{v : (v,u)∈E}|

degout(u) = |{v : (u,v)∈E}|

E.g.: degout(p) = 2 degout(s) = 1

deg in (p) = 0 deg in (s) = 2

Storing graphs on a computer

Two traditional methods:

Adjacency Matrix

Adjacency List

For both, assume V = {1, 2, …, n}.

Our example graph: 2 3

1

4

14

Adjacency Matrix

Adjacency matrix A is n×n array.

2 3

1

4

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

A =

For digraphs, put 1

iff i→j is an edge.

For general graphs,

put # edges i→j.

Adjacency Matrix

Pros:

Extremely simple.

O(1) time lookup for whether edge is present/absent.

Can apply linear algebra to graph theory…

Cons:

Always uses n2 space (memory).

Very wasteful for “sparse” graphs (m ≪ n2).

Takes Ω(n) time to enumerate neighbors of a vertex.

Adjacency List

A length-n array Adj, where Adj[i] stores a

pointer to a list of i’s neighbors.

2 3

1

4

Adj =

1

2

3

4

1 2 4 ⊥

2 3 ⊥

1 3 4 ⊥

2 3 ⊥

15

Adjacency List

Pros:

Space-efficient. Memory usage is…

Efficient to run through neighbors of vertex u:

O(deg(u)) time.

Cons:

Single edge lookup can be slow:

To check if (u,v) is an edge, may take Ω(deg(u))

time, which could be Ω(n) time.

O(n) + O(m)

Storing graphs on a computer

Adjacency matrix and list

were good enough

for your grandparents.

Any other possibilities? Sure!

But you could do something

new and fresh. Maybe add in

a hash table to your adj. list.

Time for more definitions! Yay!

Let’s talk about connectedness.

16

6

4 2

1

7 3

5

V = {1,2,3,4,5,6,7}

E = { {1,3}, {1,7}, {2,4}, {2,6},

{3,5}, {3,7}, {4,6}, {5,7} }

Here’s a graph G = (V,E):

Notice anything peculiar about it?

This graph is not connected.

A graph G = (V,E) is connected if

Terminology

∀ u,v ∈ V, v is reachable from u.

Vertex v is reachable from u if

there is a path from u to v.

That’s correct, but let’s say instead:

“if there is a walk from u to v”.

p

q

r

s

t

A walk in G is a sequence of vertices

v0, v1, v2, … , vn (with n ≥ 0)

such that {vt−1, vt}∈E for all 1 ≤ t ≤ n.

Terminology

p

q

r

s

t

We say it is a walk from v0 to vn,

and its length is n.

Example:

(p, q, s, r, p, r, s, t) is a

walk from p to t of length 7.

17

A walk in G is a sequence of vertices

v0, v1, v2, … , vn (with n ≥ 0)

such that {vt−1, vt}∈E for all 1 ≤ t ≤ n.

Terminology

p

q

r

s

t

Question:

Is vertex u reachable from u?

Answer:

Yes.

Walks of length 0 are allowed.

A path in G is a walk with no repeated vertices.

Terminology

p

q

r

s

t

Fact:

There is a walk from u to v

iff there is a path from u to v.

Because you can always “shortcut”

any repeated vertices in a walk.

Example:

walk (p, q, s, r, p, r, s, t) “shortcuts”

to path (p, q, s, t).

A path in G is a walk with no repeated vertices.

Terminology

p

q

r

s

t

If v is reachable from u, we define the

distance from u to v, dist(u,v),

to be the length of the shortest path

from u to v.

Examples:

dist(p,r) = 1, dist(p,s) = 2,

dist(p,t) = 3, dist(p,p) = 0.

18

A path in G is a walk with no repeated vertices.

Terminology

p

q

r

s

t

A cycle is a walk (of length at least 3)

from u to u with no repeated vertices

(except for beginning/ending with u).

Example:

(p,r,s,q,p) is a cycle of length 4.

p

q

r

s

t

This 5-vertex graph is connected.

p

q

r

s

t

This 11-vertex graph is not connected.

u

v

w

z

x

y

It has 3 connected components:

{p,q,r,s,t}, {u,v}, {w,x,y,z}

19

Claim:

“is reachable from” is an equivalence relation

Proof:

• u is reachable from u? ✓

• u reachable from v

⇔ v reachable from u? ✓

• u is reachable from v,

v is reachable from w

⇒ u is reachable from w? ✓

Connected components are the equivalence classes.

In a digraph, walks have to “follow the arrows”.

Given this, the reachable/walk/path/cycle stuff

is all the same, except……

u reachable from v

⇒ v reachable from u

G is strongly connected iff

∀u,v∈V, u is reachable from v.

A little more about digraphs

Challenge:

Make an n-vertex graph connected

using as few edges as possible.

20

n = 1

Done

m = 0

n = 2

m = 1

necessary

and sufficient

n = 3

m = 2

necessary

and sufficient

n = 4

n = 1

Done

m = 0

n = 2

m = 1

necessary

and sufficient

n = 3

m = 2

necessary

and sufficient

n = 4

m = 3

necessary

and sufficient

n−1 edges are always sufficient

to connect an n-vertex graph

“star graph”

“path graph”

“something

else”

21

n−1 edges are also necessary

to connect an n-vertex graph

To prove this, we will use a lemma.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Example G with k=3

components:

Case 1: u,v in different

components
v

u

Then we go down to

k−1 components.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Case 2: u,v in same

component

vu

Still have k components.

Bonus observation:

Adding {u,v} creates a cycle,

since u,v were already connected.

22

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Case 1: u,v in different

components

No cycle created, since

it would have to involve

u & v, but they weren’t

previously connected.

v

u

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then either:

a cycle was created, and G' has k components;

or no cycle was created, and G' has k−1 components.

Lemma: Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then either: a cycle was created, and G' has k components;

or no cycle was created, and G' has k−1 components.

Theorem:

A connected n-vertex graph G has ≥ n−1 edges.

Proof: Imagine adding in G’s edges one by one.

Initially, n connected components.

Each edge can decrease # components by ≤ 1.

Have to get down to 1. Hence ≥ n−1 edges.

Bonus:

G has exactly n−1 edges iff it’s acyclic (has no cycles).

Such a graph is called a tree.

23

Trees

Example trees with n = 9 vertices.

Definition/Theorem:

An n-vertex tree is any graph with

at least 2 of the following 3 properties:

connected; n−1 edges; acyclic.

It will also automatically have the third.

Tree definitions

43
5

2

7

1

6

8

9

Leaf:

Vertex of degree 1.

Tree definitions

43
5

2

7

1

6

8

9

Leaf:

Vertex of degree 1.

Internal node:

Vertex of degree > 1.

24

Tree definitions

43
5

2

7

1

6

8

9

Leaf:

Vertex of degree 1.

Internal node:

Vertex of degree > 1.

Rooted tree:

Tree with any one vertex designated as “root”.

Always drawn with root on top,

rest of tree “hanging down” from it.

Tree definitions

4

3

5

2 7

1 6

8

9

Rooted tree:

Tree with any one vertex designated as “root”.

Always drawn with root on top,

rest of tree “hanging down” from it.

For rooted trees, we use

“family tree” terminology:

parent, child, sibling,

ancestor, descendant, etc.

Tree definitions

4

3

5

2 7

1 6

8

9
For rooted trees, we use

“family tree” terminology:

parent, child, sibling,

ancestor, descendant, etc.

Binary tree:

Rooted tree where each node

has at most two children.

25

Definitions:

Seriously, there were
about 100 of them.

Theorems:

Sum of degrees = 2|E|.

The Theorem/Definition
of trees.

Study Guide

