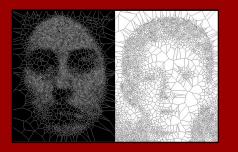


Graphs from images



These are "planar" graphs; drawable with no crossing edges.

Register allocation problem

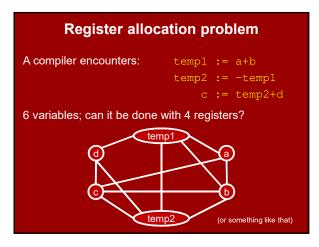
A compiler encounters:

temp1 := a+b temp2 := -temp1

6 variables; can it be done with 4 registers?

G. Chaitin (IBM, 1980) breakthrough:

Let variables be vertices. Put edge between u and v if they need to be live at same time. The least number of registers needed is the chromatic number of the graph.

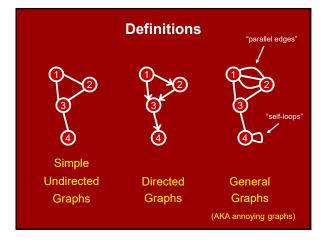


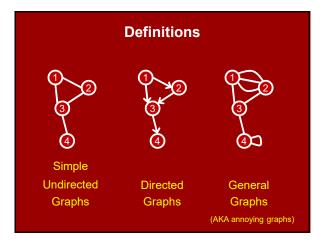
Computer Science Life Lesson:

If your problem has a graph, ⁽ⁱ⁾. If your problem doesn't have a graph, try to make it have a graph.

Warning:

The remainder of the lecture is, approximately, 100 definitions.





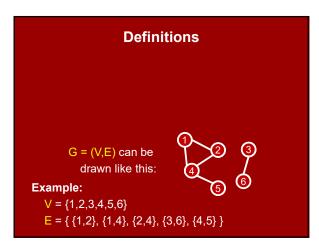
Definitions

A **graph** G is a pair (V,E) where: V is the finite set of **vertices/nodes**; E is the set of **edges**.

Each edge e∈E is a pair {u,v}, where u,v∈V are distinct.

Example:

 $V = \{1,2,3,4,5,6\}$ E = { {1,2}, {1,4}, {2,4}, {3,6}, {4,5} }



Notation

- **n** almost always denotes |V|
- **M** almost always denotes |E|

Edç	je cases (haha)	
Question: Can we have a graph	n with no edges (m=0)?	
Answer: Yes! For example, V = {1,2,3,4,5,6} E = ∅	0 2 3 4 5 6	
Called the " empty graph " with n vertices.		

Edge cases

Question:

Can we have a graph with no vertices (n=0)?

Answer:

Um..... well.....

IS THE NULL-GRAPH & POINTLESS CONCEPT?

Frank Harary University of Michigan and Oxford University

<u>Ronald C. Read</u> University of Waterloo

ABSTRACT

The graph with no points and no lines is discussed critically. Arguments for and against its official admittance as a graph are presented. This is accompanied by an extensive survey of the literature. Paradoxical properties of the null-graph are noted. No conclusion is reached.

Edge cases

Question:

Can we have a graph with no vertices (n=0)?

Answer:

It's to convenient to say **no**. We'll require V ≠ Ø.

One vertex (n = 1) definitely allowed though. Called the "**trivial graph**".

1

More terminology

Suppose $e = \{u, v\} \in E$ is an edge.

We say:

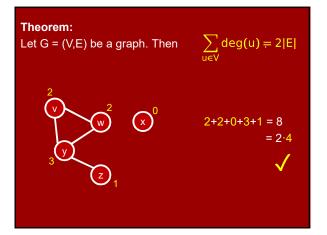
u and v are the **endpoints** of e, u and v are **adjacent**, u and v are **incident** to e, u is a **neighbor** of v, v is a **neighbor** of u.

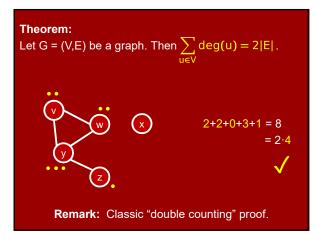
More terminology

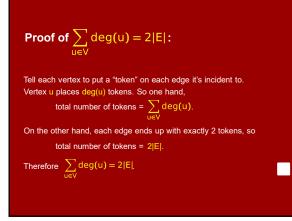
For $u \in V$ we define $N(u) = \{v : \{u,v\}\in E\}$, the **neighborhood** of u.

E.g., in the below graph, $N(y) = \{v,w,z\}$, $N(z) = \{y\}$, $N(x) = \emptyset$. The **degree** of u is deg(u) = |N(u)|.

E.g., deg(y)=3, deg(z) = 1, deg(x) = 0.







Poll:

In an n-vertex graph, what values can m be? (I.e., what are possibilities for the number of edges?)

m = 1	
m = n	
m = n ^{1.5}	
m = n²	
m = n ³	

In an n-vertex graph, what values can m be? (I.e., what are possibilities for the number of edges?)

Question:

In an n-vertex graph, how large can m be? (That is, what is the max number of edges?)

Answer:
$$\binom{n}{2} = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n = O(n^2)$$

E.g.: $n = 5, m = \binom{5}{2} = 10.$
Called the complete graph
on n vertices. Notation: K_n

A bogus "definition"

If m = O(n) we say G is "**sparse**". If $m = \Omega(n^2)$ we say G is "**dense**".

This does not actually make sense. E.g., if n = 100, m = 1000, is it sparse or dense? Or neither?

It **does** make sense if one has a **sequence** or **family** of graphs.

Anyway, it's handy informal terminology.

Let's go back to talking about $\mathbf{K}_{\mathbf{n}}.$

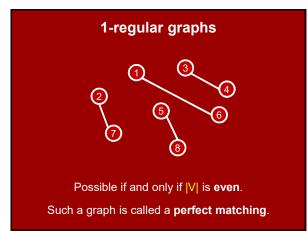
In K_n, every vertex has the **same degree**.

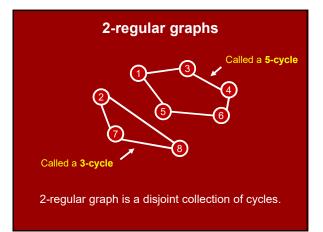
This is called being a **regular** graph.

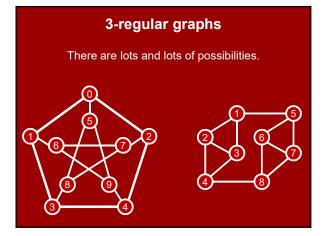
We say G is **d-regular** if all nodes have degree d.

For example: K_n is (n-1)-regular; the empty graph is 0-regular.

What about d-regular for other d?





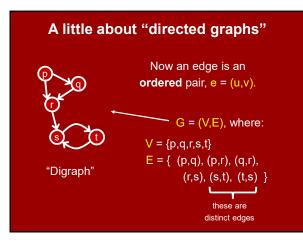


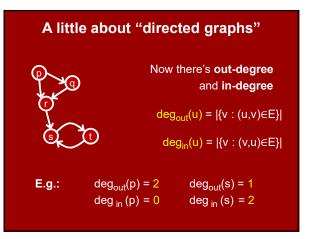
A little about "directed graphs"

First, they have a "celebrity couple"-style nickname, a la:

"Brangelina"

"Kimye





Storing graphs on a computer

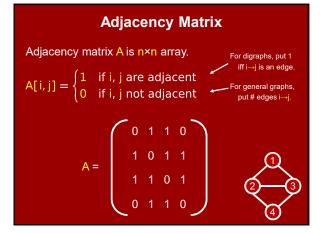
Two traditional methods:

Adjacency Matrix

Adjacency List

For both, assume V = $\{1, 2, ..., n\}$.

Our example graph:





Adjacency Matrix

Pros:

Extremely simple.

O(1) time lookup for whether edge is present/absent.

Can apply linear algebra to graph theory...

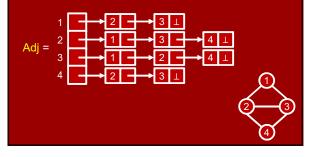
Cons:

Always uses n^2 space (memory). Very wasteful for "sparse" graphs (m $\ll n^2$).

Takes $\Omega(n)$ time to enumerate neighbors of a vertex.

Adjacency List

A length-n array Adj, where Adj[i] stores a pointer to a **list** of i's neighbors.



Adjacency List

Pros:

Space-efficient. Memory usage is... O(n) + O(m)

Efficient to run through neighbors of vertex u: O(deg(u)) time.

Cons:

Single edge lookup can be slow: To check if (u,v) is an edge, may take $\Omega(deg(u))$ time, which could be $\Omega(n)$ time.

Storing graphs on a computer

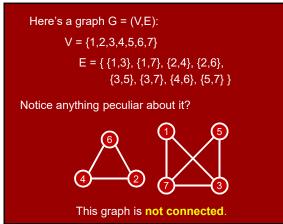
Any other possibilities? Sure!

Adjacency matrix and list were good enough for your grandparents.

But you could do something new and fresh. Maybe add in a hash table to your adj. list.

Time for more definitions! Yay!

Let's talk about connectedness.



Terminology

A graph G = (V,E) is **connected** if \forall u,v \in V, v is **reachable** from u.

Vertex v is **reachable** from u if there is a **path** from u to v.

That's correct, but let's say instead: "if there is a **walk** from u to v".

Terminology

A walk in G is a sequence of vertices

$$\label{eq:V0} \begin{split} &v_0,\,v_1,\,v_2,\,\ldots\,,\,v_n \quad (\text{with }n\geq 0)\\ &\text{such that }\{v_{t-1},\,v_t\}{\in}E \text{ for all }1\leq t\leq n. \end{split}$$

We say it is a walk from v_0 to v_n , and its length is n.

Example:

(p, q, s, r, p, r, s, t) is a walk from p to t of length 7.

Terminology

A walk in G is a sequence of vertices

 $\label{eq:v0} \begin{array}{l} v_0,\,v_1,\,v_2,\,\ldots\,,\,v_n \quad (\text{with }n\geq 0) \\ \text{such that }\{v_{t-1},\,v_t\}\in E \text{ for all }1\leq t\leq n. \end{array}$

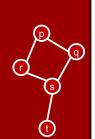
Question:

Is vertex u reachable from u?

Answer:

Yes.

Walks of length 0 are allowed.



Terminology

A path in G is a walk with no repeated vertices.

Fact:

There is a walk from u to v iff there is a path from u to v.

Because you can always "shortcut" any repeated vertices in a walk.

Example:

walk (p, q, s, r, p, r, s, t) "shortcuts" to path (p, q, s, t).

Terminology

A path in G is a walk with no repeated vertices.

If v is reachable from u, we define the distance from u to v, dist(u,v),

to be the length of the shortest path from u to v.

Examples: dist(p,r) = 1, dist(p,s) = 2, dist(p,t) = 3, dist(p,p) = 0.

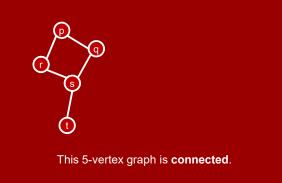
Terminology

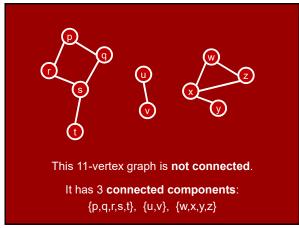
A path in G is a walk with no repeated vertices.

A **cycle** is a walk (of length at least 3) from u to u with no repeated vertices (except for beginning/ending with u).

Example:

(p,r,s,q,p) is a cycle of length 4.





Claim:

"is reachable from" is an equivalence relation

Proof:

- u is reachable from u? \checkmark
- u reachable from v
 - \Leftrightarrow v reachable from u?
 - u is reachable from v,
 - v is reachable from w
 - \Rightarrow u is reachable from w? \checkmark

Connected components are the equivalence classes.

 \checkmark

A little more about digraphs

In a digraph, walks have to "follow the arrows".

Given this, the reachable/walk/path/cycle stuff is all the same, except.....

u reachable from v

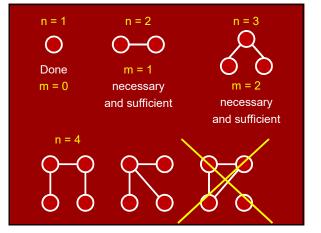
 \neq v reachable from u

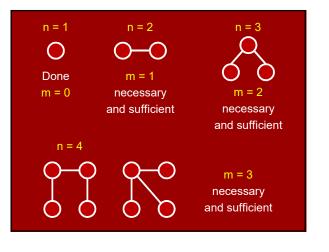
G is strongly connected iff $\forall u, v \in V, u$ is reachable from v.

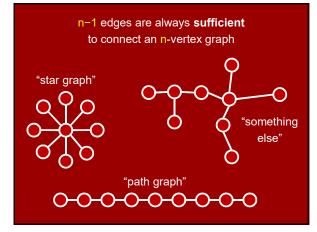
Challenge:

Make an n-vertex graph connected using as few edges as possible.

CHALLENGE CONSIDERED







n-1 edges are also **necessary** to connect an n-vertex graph

To prove this, we will use a lemma.

Lemma:

Let G be a graph with k connected components. Let G' be formed by adding an edge between $u,v \in V$. Then G' has either k or k-1 connected components.

Lemma:

Let G be a graph with k connected components. Let G' be formed by adding an edge between $u,v \in V$. Then G' has either k or k-1 connected components.

Example G with k=3 components:

Case 1: u,v in different components

Then we go down to k-1 components.

Lemma:

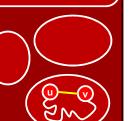
Let G be a graph with k connected components. Let G' be formed by adding an edge between $u,v \in V$. Then G' has either k or k-1 connected components.

Case 2: u,v in same component

Still have k components.

Bonus observation:

Adding {u,v} creates a **cycle**, since u,v were already co<u>nnected</u>.

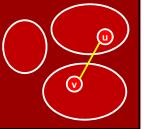


 \odot

Lemma:

Let G be a graph with k connected components. Let G' be formed by adding an edge between $u,v \in V$. Then G' has either k or k-1 connected components.

Case 1: u,v in different components



No cycle created, since it would have to involve u & v, but they weren't previously connected.

Lemma:

Let G be a graph with k connected components. Let G' be formed by adding an edge between $u,v \in V$. Then either:

a cycle was created, and G' has k components; or no cycle was created, and G' has k-1 components.

mma: Let G be a graph with k connected components. Let G' be formed by adding an edge between u,v∈V. Then either: a cycle was created, and G' has k components; or no cycle was created, and G' has k−1 components.

Theorem:

A connected n-vertex graph G has \geq n-1 edges.

Proof: Imagine adding in G's edges one by one. Initially, n connected components. Each edge can decrease # components by ≤ 1. Have to get down to 1. Hence ≥ n-1 edges.

Bonus:

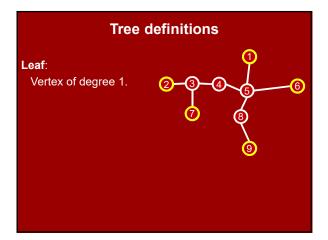
G has exactly n-1 edges iff it's **acyclic** (has no cycles). Such a graph is called a **tree**.

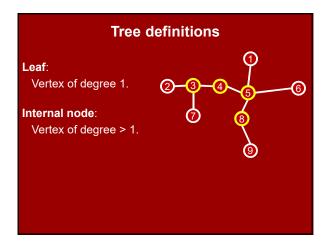
Trees

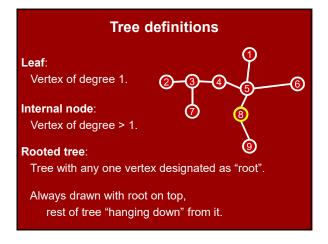
Example trees with n = 9 vertices.

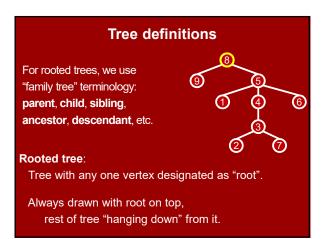
Definition/Theorem:

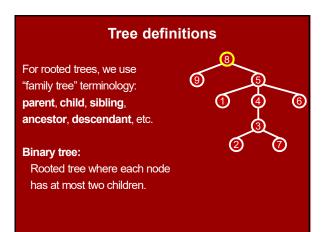
An n-vertex **tree** is any graph with at least 2 of the following 3 properties: connected; n-1 edges; acyclic. It will also automatically have the third.











Study Guide

Definitions: Seriously, there were about 100 of them.

Theorems:

Sum of degrees = 2|E|.

The Theorem/Definition of trees.