

October 9th, 2018

Some motivating real-world examples

matching machines and jobs

Job I

Job 2

:

Job n

Some motivating real-world examples

matching professors and courses

15-110

15-112

15-122 15-150

15-251

:

Some motivating real-world examples matching rooms and courses

GHC 4401	15-110
DH 2210	15-112

GHC 5222 15-122 WEH 7500 15-150

DH 2315 15-251

:

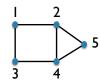
Some motivating real-world examples

matching kidney donors and patients

:

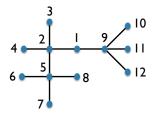
How do you solve a problem like this?

- I. Formulate the problem
- 2. **Ask**: Is there a trivial algorithm? Find and analyze.
- 3. **Ask**: Is there a better algorithm? Find and analyze.


Remember the CS life lesson First step: Formulate the problem **Purpose:** - Get rid of all the distractions, identify the crux. - Get a clean mathematical model that is easier to reason about. - Solutions often generalize to other settings. Bipartite Graphs G = (V, E) is **bipartite** if:

Bipartite Graphs

Given a graph ${\cal G}=(V,E)$, we could ask, is it bipartite?

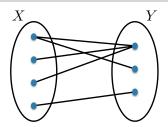


Poll

Is this graph bipartite?

- Yes
- No
- Beats me

Important Characterization


An obstruction for being bipartite:

Contains a cycle of odd length.

Is this the only type of obstruction?

Theorem:

Bipartite Graphs

Often we write the bipartition explicitly:

$$G = (X, Y, E)$$

Bipartite Graphs

Great at modeling relations between two classes of objects.

Examples:

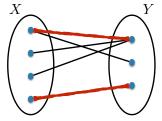
X = machines, Y = jobs

An edge $\{x,y\}$ means x is capable of doing y.

X = professors, Y = courses

An edge $\{x,y\}$ means x can teach y.

X =students, Y =internship jobs


An edge $\{x,y\}$ means x and y are interested in each other.

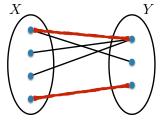
:

Matchings in bipartite graphs

Often, we are interested in finding a **matching** in a graph

matching

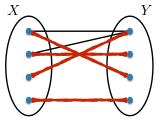
A matching:


Matchings in bipartite graphs Often, we are interested in finding a matching in a graph maximum matching

Maximum matching:

Matchings in bipartite graphs

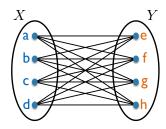
Often, we are interested in finding a **matching** in a graph



Maximal matching:

Matchings in bipartite graphs

Often, we are interested in finding a **matching** in a graph



Perfect matching:

Poll

How many different perfect matchings does the graph have (in terms of n)?

$$|X| = |Y| = n$$

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

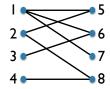
The problem we want to solve is:

Maximum matching problem

Input: A graph G = (V, E).

Output: A maximum matching in G.

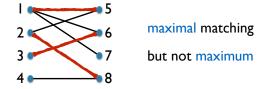
Bipartite maximum matching problem	
Actually, we want to solve the following restriction:	
Bipartite maximum matching problem	
Input: A <u>bipartite</u> graph $G = (X, Y, E)$. Output: A maximum matching in G .	
How do you solve a problem like this?	
Formulate the problem	
1. Tormulate the problem	
2. Ask : Is there a trivial algorithm? Find and analyze.	
,	
3. Ask : Is there a better algorithm? Find and analyze.	
Pipartita maximum matching problem	1
Bipartite maximum matching problem	
Bipartite maximum matching problem	
Input : A <i>bipartite</i> graph $G = (X, Y, E)$. Output : A maximum matching in G .	
•	
Is there a (trivial) algorithm to solve this problem?	


How do you solve a problem like this?

- I. Formulate the problem
- 2. **Ask**: Is there a trivial algorithm? Find and analyze.
- 3. **Ask**: Is there a better algorithm? Find and analyze.

Bipartite maximum matching problem

A good first attempt:


What if we picked edges "greedily"?

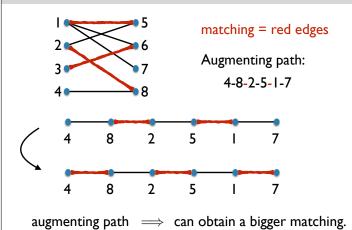
Bipartite maximum matching problem

A good first attempt:

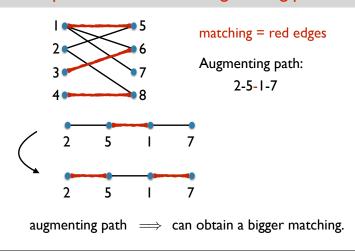
What if we picked edges "greedily"?

Is there a way to get out of this local optimum?

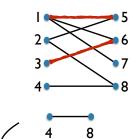
Important Definition: Augmenting paths


Let M be some matching.

An **alternating path** with respect to **M** is a path in **G** such that:



An **augmenting path** with respect to **M** is an alternating path such that:


Important Definition: Augmenting paths

Important Definition: Augmenting paths

Important Definition: Augmenting paths

matching = red edges

Augmenting path:

4-8

augmenting path \implies can obtain a bigger matching.

Augmenting paths and maximum matchings

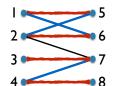
augmenting path \implies can obtain a bigger matching.

In fact, it turns out:

no augmenting path \implies maximum matching.

Theorem:

Augmenting paths and maximum matchings

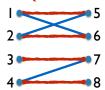

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:

If M not maximum, there is an augmenting path w.r.t. M.

Let M^* be a maximum matching. $|M^*| > |M|$.

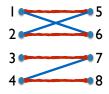


Let **S** be the set of edges contained in **M*** or **M** but not both.

 $S = (M* \cup M) - (M \cap M*)$

Augmenting paths and maximum matchings

Proof (continued):



$$S = (M* \cup M) - (M \cap M*)$$

(will find an augmenting path in S)

Augmenting paths and maximum matchings

Proof (continued):

$$S = (M* \cup M) - (M \cap M*)$$

(will find an augmenting path in **S**)

Augmenting paths and maximum matchings

Theorem:

A matching **M** is maximum **if and only if** there is **no** augmenting path with respect to **M**.

Summary of proof:

Algorithm to find maximum matching	
Theorem: A matching M is maximum if and only if there is no augmenting path with respect to M.	
Algorithm to find max matching:	