| 5-25 I: Great Ideas in
Theoretical Computer Science
Lecture 13: Stable Matchings

October IIth, 2018

Last Time

Some motivating real-world examples
matching machines and jobs matching professors and courses matching rooms and courses matching students and internships matching kidney donors and patients

How do you solve a problem like this?

I. Formulate the problem
2. Ask: Is there a trivial algorithm? Find and analyze.
3. Ask: Is there a better algorithm? Find and analyze.

Bipartite maximum matching problem

Input: A bipartite graph $G=(X, Y, E)$.
Output: A maximum matching in G.

Important Definition: Augmenting paths

Let \mathbf{M} be some matching.
An alternating path with respect to \mathbf{M} is a path in \mathbf{G} such that:

- the edges in the path alternate between being in \mathbf{M} and not being in \mathbf{M}

An augmenting path with respect to \mathbf{M} is an alternating path such that:

- the first and last vertices are not matched by M

Important Definition: Augmenting paths

Algorithm to find maximum matching

Theorem:

A matching \mathbf{M} is maximum if and only if there is no augmenting path with respect to M.

Algorithm to find max matching:

- Start with a single edge as your matching M.
- Repeat until there is no augmenting path w.r.t. M:
- Find an augmenting path with respect to M.
- Update \mathbf{M} according to the augmenting path.

OK, but how do you find an augmenting path???

Finding augmenting paths in bipartite graphs

Finding augmenting paths in bipartite graphs

Algorithm:

Running time:

Important Note

Theorem:

A matching \mathbf{M} is maximum if and only if there is no augmenting path with respect to \mathbf{M}.

This theorem holds for all graphs.
The algorithm works for bipartite graphs.

Hall's Theorem

Characterization for perfect matchings

Often we are interested in perfect matchings.

An obstruction:

Characterization for perfect matchings

Often we are interested in perfect matchings.

An obstruction:

Characterization for perfect matchings

Often we are interested in perfect matchings.
$S=\{1,3,4\}$
$N(S)=\{5,7\}$

An obstruction:

Characterization for perfect matchings

Is this the only type of obstruction?

Theorem [Hall's Theorem]:

Corollary:

An application of Hall's Theorem
Rank: I $\begin{array}{llllllllllllll} & 3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & J & Q & K\end{array}$

Suppose a deck of cards is dealt into 13 piles of 4 cards each.
Claim: there is always a way to select one card from each pile so that you have one card from each rank.

An application of Hall's Theorem

So we want to show:
For any $S \subseteq X, \quad|S| \leq|N(S)|$.

Stable matching problem

2-Sided Markets

A market with 2 distinct groups of participants each with their own preferences.

Aspiration: A Good Centeralized System

What can go wrong?

Formalizing the problem
An instance of the problem can be represented as a complete bipartite graph + preference list of each node.

$$
|X|=|Y|=n
$$

Goal:

Formalizing the problem

What is a stable matching?

A variant: Roommate problem
A non-bipartite version

$(c, b, d) \quad a \bullet$	oc (b, a, d)	
(a, c, d)	b	od (a, c, b)

Does this have a stable matching?

Stable matching: Is there a trivial algorithm?

Trivial algorithm:

The Gale-Shapley proposal algorithm

While there is a man \mathbf{m} who is not matched:

- Let w be the highest ranked woman in m's list to whom m has not proposed yet.
- If \mathbf{w} is unmatched, or \mathbf{w} prefers \mathbf{m} over her current match:
- Match mand w.
(The previous match of w is now unmatched.)

Cool, but does it work correctly?

- Does it always terminate?
- Does it always find a stable matching? (Does a stable matching always exist?)

Gale-Shapley algorithm analysis

Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most n^{2} iterations.

A constructive proof that a stable matching always exists.

3 things to show:

Gale-Shapley algorithm analysis

1. Number of iterations is at most n^{2}.

Gale-Shapley algorithm analysis

2. The algorithm terminates with a perfect matching.

If we don't have a perfect matching:
A man is not matched
\Longrightarrow All women must be matched
\Longrightarrow All men must be matched.
Contradiction

Gale-Shapley algorithm analysis

2. The algorithm terminates with a perfect matching.

If we don't have a perfect matching:
A man is not matched
\Longrightarrow All women must be matched
\Longrightarrow All men must be matched.
Contradiction

Gale-Shapley algorithm analysis

3. The matching has no unstable pairs.
"Improvement" Lemma:
(i) A man can only go down in his preference list.
(ii) A woman can only go up in her preference list.

Unstable pair:

(m, w) unmatched
but they prefer each other.

Further questions

Theorem:
 The Gale-Shapley proposal algorithm always terminates with a stable matching after at most n^{2} iterations.

Does the order of how we pick men matter?
Would it lead to different matchings?

Is the algorithm "fair"?
Does this algorithm favor men or women or neither?

Further questions

\mathbf{m} and \mathbf{w} are valid partners if there is a stable matching in which they are matched.
best $(\mathbf{m})=$ highest ranked valid partner of \mathbf{m}

Theorem:

Further questions

worst $(w)=$ lowest ranked valid partner of w

Theorem:

Real-world applications

Variants of the Gale-Shapley algorithm is used for:

- matching medical students and hospitals
- matching students to high schools (e.g. in New York)
- matching students to universities (e.g. in Hungary)
- matching users to servers

:

The Gale-Shapley Proposal Algorithm (1962)

"for the theory of stable allocations and the practice of market design."

