15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 14

Boolean Formulas and Circuits

Today

Briefly mention the “P versus NP” problem
Remind you of Boolean formulas

Tell you about Boolean circuits

Relate circuit size to algorithmic efficiency
See why circuits are a good approach to P vs. NP

See why circuits are a bad approach to P vs. NP

P versus NP

The most famous unsolved problem in
Theoretical Computer Science
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P versus NP

The most famous unsolved problem in
Theoretical Computer Science

One of the most famous unsolved problems in
all of Computer Science, all of Mathematics
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P versus NP

The most famous unsolved problem in
Theoretical Computer Science

One of the most famous unsolved problems in
all of Computer Science, all of Mathematics

| can state it for you in ten minutes

Warning: You won’t get the full, glorious
perspective on why “P versus NP”
is so important until Lectures 15-16

Boolean formulas
You've seen these before in Concepts.
Stuff like this:
((=x=>y)A(xVvz)ey)

X,Y, 2 ... Boolean variables, values 0/1 (or T/F)
=, A, V, ... Boolean connectives (or operations)
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= O MO
COoO R K
= o oo
O
H O KK
HOoOOoHM

Boolean formulas
You've seen these before in Concepts.
Stuff like this:
((=x=>y)A(xVvz)ey)

X,Y, 2z, ... Boolean variables, values 0/1 (or T/F)
=, A, V, ... Boolean connectives (or operations)

Truth assignment: 0/1 value for each variable

A formula is satisfiable if there’s a truth assignment
to the variables making the whole formula true




Truth tables

all possible
truth assignments

resulting
truth value

H M KHKHOOOO
H HFOOKMKMKOO
HOKO®KOHRO
= OOHMKOOO

Satisfiable: At least one 1 in truth table
Unsatisfiable: No 1's in truth table
Tautology: All 1's in truth table

An unsolved problem in
Computer Science/Mathematics:

Who invented truth tables?

Russell? Wittgenstein? Post? Peirce?

tukasiewicz? Jevons? Ladd-Franklin?

Another unsolved problem in
Computer Science/Mathematics:

What is the intrinsic complexity of SAT?

SAT: Given as input a Boolean formula,
decide if it is satisfiable or not.

Question: Is SAT decidable?

Answer: Yes.




SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):
Enumerate all truth assignments a.
For each a, compute the truth value it gives G.
If any of them satisfy G, then ACCEPT, else REJECT.

Remark: RAM pseudocode should have some
more detail, but | expect you could fill it in.

SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):
Enumerate all truth assignments a.
For each a, compute the truth value it gives G.
If any of them satisfy G, then ACCEPT, else REJECT.

Say the input length (encoding size) of G is N.
Say the # of variables in G is n. (Note: n < N.)

(Although we usually write n for input length,
for SAT it’s super-traditional to use it for # of variables.)

SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):
Enumerate all truth assignments a.
For each a, compute the truth value it gives G.
If any of them satisfy G, then ACCEPT, else REJECT.

Say the input length (encoding size) of G is N.

Say the # of variables in G is n. (Note: n < N.)
# of truth assignments? 2N

. running time of Brute-Force: Q(2")




SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):
Enumerate all truth assignments a.
For each a, compute the truth value it gives G.
If any of them satisfy G, then ACCEPT, else REJECT.

Say the input length (encoding size) of G is N.

Say the # of variables in G is n. (Note: n < N.)
Running time of Brute-Force: O(2"-N)

. running time of Brute-Force: Q(2")

An unsolved problem in
Computer Science/Mathematics

What is the intrinsic complexity of SAT?
SAT: Given as input a Boolean formula,

decide if it is satisfiable or not.

We saw SAT is decidable in O(2N-N) time.
Is SAT decidable in polynomial O(N€) time?

This is precisely the P versus NP problem!

The P versus NP problem
Is SAT decidable in polynomial O(N€) time?

Warning: You won’t get the full, glorious
perspective on why “P versus NP”
is so important until Lectures 15-16




The P versus NP problem
Is SAT decidable in polynomial O(N€) time?
Most(?) people believe the answer is NO.
Why is it so hard to prove this?

Polynomial-time algorithms can do
S0 many amazing, surprising things!

Very hard to prove efficient algorithm don’t exist.

Boolean formulas as binary trees

((=x->y)A((XxV2Z)ey)

Boolean formulas as binary trees

Variables at the leaves




Boolean formulas as binary trees
Variables at the leaves

Connectives at the internal nodes

Connectives have fan-in 2 (except — has fan-in 1)
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Boolean formula conventions

* The “size” of a formula is the # of leaves
(which is also # of variable-appearances).

((=x=>y)A(xV2)eoy))
has size 5,
for example

Boolean formula conventions
The “size” of a formula is the # of leaves
(which is also # of variable-appearances).

Sometimes -, &, other connectives allowed.
Sometimes just =, A, V. (“De Morgan formulas”)
This is “without (much) loss of generality”.

((((@a A b) Ac) Ad) - A 2) is often written as
(@AbACAdA--AZ), similarly for v.

Doesn’t affect “size” but does affect “depth”.




((((@a A b) A C) Ad)

(@AbACAd) /
@ ® © ©

“Allowing unlimited fan-in”

More on truth tables

all possible
truth assignments

resulting
truth value

H R KHKMHOOORO
H O K ORKOHRKO
H 2 OO®KROOO

(1}
0
1
1
o
(1}
1
1

Every n-variable formula yields a truth table.

Two different n-variable formulas
can have the same truth table.

More on truth tables

\

resulting
truth value

all possible
truth assignments

H R KHRHROOORO
H R OOH®KHMKMKODO
H OHKORKOHRKO
H 2 OO®KROOO

Every n-variable formula yields a truth table.

Two different n-variable formulas
can have the same truth table.




More on truth tables

all possible
truth assignments

resulting
truth value

H R KHKMHOOORO
H B OOH®KHMKODO
H O ORKOHRO
H R OO®KOOO

Every n-variable formula yields a truth table.

Two different n-variable formulas
can have the same truth table.

More on truth tables

all possible
truth assignments

resulting
truth value

H R KHKMHOOORO
H R OO®KHMKMKODO
H O K ORKOHRKO
H 2 OO®KROOO

If two n-variable formulas have the same
truth table, we call them equivalent.

More on truth tables

If two n-variable formulas have the same
truth table, we call them equivalent.

10



Boolean functions

We also think of an n-bit truth table as a
Boolean function, f: {0,1}"- {0,1}.

We think of any formula having that truth table
as “computing” that Boolean function.

A Boolean function f: {0,1}3 - {0,1} can be
specified by a truth table. E.g.:

H M KHHKHOOOO

o
0
1
1
o
0
1
1

H O OK OO
H +HKHOKOOO

Or it can be specified by words. E.g.:
“f(x,y,z) = 1 iff at least two input bits are 1”

Question:
How many Boolean functions (truth tables)
are there on n variables?

n
Answer: 22

We know each Boolean formula on n
variables “computes” one such function.

Question:
Is every Boolean function (truth table)
computed by some Boolean formula?

11
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X1 A Xy A X3 A Xy

Is every truth table computed by some formula?

_‘Xl AN _‘X2 AN _‘X3 A _‘X4

Is every truth table computed by some formula?

Xl/\ _‘Xz/\ X3/\ _‘X4
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Is every truth table computed by some formula?

_|X1/\X2AX3AX4

HFRPHHEHRPRHHEHRFROOOOOOO O
PFHEFHHOOOOHKHEKELHEKEEHOOO
HRPOORFRHOOKHKHOOHKLHEO
HFOHOROHOHOROHKOHR
OCO0O00O0O0O0O0OFHFOOOO0OO0OO| —

Is every truth table computed by some formula?

We can similarly do
any truth table
with exactly one 1.

0
(0]
(0]
0
0
(0]
0
0
1
1
1
1
1
1
1
1

HFHEPHHOOOOHKEKELHEKHEKHOOO
HRPOOKFRHOOKHHKHOOHKLHEO
HFOHOROHOHORKROHKOHR

Is every truth table computed by some formula?

What if there
are two 1's?

— (X7 A X5 A X3 A Xy)
\%
+— (X7 A 79X A X3 A T1Xy)

HFRPHHERRPHHERRFPOOOOOOO O
HFHEPHHOOOOHKEKELHEKEHOOO
HFRPOORFRHOOKHKHOOHKLEO
HFOHOROHOHORKROHKOHR
OCO0OO0OO0O0OHFHFOOFHFOOOOOOO| —
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Is every truth table computed by some formula?

What if there
are three 1's?

— (X7 A X5 A X3 A Xy)
\%
+— (X7 A 79X A X3 A T1Xy)

HFRPHHEHRPRHHEHRFROOOOOOO O
PFHEFHHOOOOHKHEKELHEKEEHOOO
HRPOORFRHOOKHKHOOHKLHEO
HFOHOROHOHOROHKOHR
OCO0OO0OO0O0OHFHFOOFHFOOOOOOO| —

Is every truth table computed by some formula?

What if there
are three 1's?

— (X7 A X5 A X3 A Xy)
\%

+— (X7 A 79X A X3 A T1Xy)
\%

— (X7 A X3 A X3 A 71Xy)

OFHFOOOFHFOOFOOOOOOO| —

0
(0]
(0]
0
0
(0]
0
0
1
1
1
1
1
1
1
1

HFHEPHHOOOOHKEKELHEKHEKHOOO
HRPOOKFRHOOKHHKHOOHKLHEO
HFOHOROHOHORKROHKOHR

We have just done “proof by example” ©
for the following result (proper proof in Notes):

Theorem:
Every Boolean function (truth table) over
n variables can be computed by a formula.

Actually, we missed a case...
...the Boolean function which is always 0.

Well, it's computed by (x; A =X7).

14



Theorem:
Every Boolean function (truth table) over
n variables can be computed by a formula.

In fact, by a big v of A’S oOf (possibly negated) Variables.

“DNF formula”

Size < 2™n

Theorem:
Every Boolean function (truth table) over
n variables can be computed by a
DNF formula of size < 2"-n.

Exercise:
Same statement but with a “CNF formula”:
a big A of v's of (possibly negated) Variables.

Circuits

15



Wait, aren’t these formulas?

Yes they are, but circuits are
more general than formulas.

Below is a circuit, but it’'s not a formula.

What's the difference?

Below is a circuit, but it's not a formula.

What's the difference?

Circuits can have fan-out > 1.

16



Anatomy of a circuit

a gate with
“fan-in" 2,
“fan-out” 1

Anatomy of a circuit

No “loops” allowed! (“directed acyclic graph”)

”

There is (at least) one “evaluation ordering”.

Evaluation ordering

: X (input)
1y (input)
: 2 (input)

Any set of gates can be designated as “output”;
if unspecified, the “last” gate is the single output.

17



Evaluation ordering

: X (input)
1y (input)
: 2 (input)

“Size” of a circuit: # of non-input gates.
(In this example, 5.)

Circuits as programming languages

: X (input)
1y (input)
1 z (input)

This is a great way
to specify a circuit. -

0 i |
No picture required! i A (of G, Gy)

: = (of Gy)
. v (of Gy, G3)
. A (of Gy, Gg)
. v (of Gs, Gy)

Looks like code in a
programming language!

Looks like circuit size = running time...

Circuits:
Super-simple.
Looks like a programming language.
Circuit complexity (size) is very concrete.

Circuits can compute any Boolean function.

Why didn’t we use circuits
(instead of Turing Machines)
to define computation?!

Good question, we’ll come back to that...

18



Definitional question:
What gates are “allowed” in circuits?

Almost always allowed: A with fan-in 2
v with fan-in 2
= with fan-in 1

Usually allowed: 0 with fan-in 0
1 with fan-in 0

Sometimes allowed: any fan-in 2 gate; e.g.,
= (equals), & (XOR)

Often allowed: A With any fan-in
v with any fan-in

Doesn’t make a big difference, but always ask.

Let’s build a circuit for 10-bit PALINDROMES
f:{0,1}1°- {0,1}

f(X1,X2,X3,X4,Xs5,Xg,X7,Xg,Xg,X10) = 1
if and only if input string is same as its reverse

Let’s be liberal, allow all gates on previous slide.

e —

SO OO0 066 0D

Size? 6 (Depth? 2 )

What if we only allow fan-in 2 gates?

19



Size? 9 (Depth? higher )

What if we only allow fan-in 2 gates?

Circuit size for 10-bit inputs:
Circuit size for 11-bit inputs:
Circuit size for 12-bit inputs:
Circuit size for 12-bit inputs:

Continuing this pattern, we can get a circuit

deciding n-bit inputs for PALINDROME having size...

n—1 ifniseven
- hich i
s(n) {n—2 ifnisodd  WMchisOm)

20



Circuits:
Super-simple.
Look like a programming language.
Circuit complexity (size) is very concrete.
Circuits can compute any Boolean function.

Why didn’t we use circuits
(instead of Turing Machines)
to define computation?!

From Lecture 2...

What is computation?
What is an algorithm?

How can we mathematically define them?

Inspirational quotation

“An algorithm is a finite
answer to an infinite
number of questions”

- |
€:
-y

Stephen Kleene

21



“Circuits are an infinite
answer to an infinite
number of questions ®”

Consider the language PALINDROMES S {0,1}*
How can we compute it using circuits?

Well, for length-10 inputs we had something...

Consider the language PALINDROMES S {0,1}*
How can we compute it using circuits?

Well, for length-10 inputs we had something...

22



Consider the language PALINDROMES S {0,1}*

How can we compute it using circuits?

Well, for length-10 inputs we had something...
For length-11 inputs we had something else...
For length-12 inputs we had something else...
For length-0 inputs we had something else...
For length-1 inputs we had something else

ANANL

ALAAL

This is called a “family of circuits”.

It's a fine mathematical concept, but we
don’t like it to use it to define “computation”,
because it’s infinite.

(It sort of begs the question: In real life, how do you get C,?
Probably there’s an algorithm that on input n, outputs C,,...)

ANAAL

Definition:

A family of circuits € is an infinite sequence
Co: C1, Cy, ... where C,, is a circuit with n inputs.

We say C decides L € {0,1}*ifforalln € N,
C,decides L, =LnN {0,1}".

The size of Cis the function S : N -» N
defined by S(n) = size of C,,.

23



Example . o)

. (input)
Let € be the family of
circuits where C, is... input)
of Gy, Gp)
Then € decides the of G, Gp1)
of G3, Gp_»)
language PALINDROMES

and has size O(n); Einjar (0f Gina1 Ginj21+1)
Ag: (of Eq, E5)
(
(

(
(
(
(

more precisely, Ay: of Ay, E5)
n—1 ifniseven As: of Ay, Eg)

|
*(M=1n-2 ifnisodd

Appia A (of Anja1-1, Einj2)

“only for n = 4;
special cases for n=0,1,2,3

Recall: Every n-bit Boolean function computable
by a formula/circuit of size O(2"-n).

(I don’t mean to alarm you,
but this includes HALT!!)
Consequence:

Every language is computed by a family
of circuits of size O(2"-n).

Recall: Every n-bit Boolean function computable
by a formula/circuit of size O(2"-n).

Easy improvement:
Every language is computed by a family
of circuits of size O(2").




Recall: Every n-bit Boolean function computable
by a formula/circuit of size O(2"-n).

Slightly trickier improvement:
Every language is computed by a family
of circuits of size O(2"/n).

Proved by the great
Claude Shannon in 1949.

TM time versus circuit size

Theorem:

Suppose there is a TM deciding L in time T(n).
Then it can be converted into a circuit family
deciding L with size S(n) = O(T(n)?).

If you like a challenge, try to prove this yourself.

If you don’t like a challenge, but are still curious,
see the Notes online.

If you neither like a challenge nor are curious, ®.

We’'ll need theorem when studying “NP-hardness.”

TM time versus circuit size

Theorem:
Suppose there is a TM deciding L in time T(n).
Then it can be converted into a circuit family
deciding L with size S(n) = O(T(n)?).

Corollary:

Any L solvable in polynomial time on TMs
(or in RAM model) has polynomial-size circuits.

25



TM time versus circuit size

Corollary:
If you want to show some L is not solvable
in polynomial time, suffices to show it is not
solvable by polynomial-size circuit families.

Corollary:
Any L solvable in polynomial time on TMs
(or in RAM model) has polynomial-size circuits.

TM time versus circuit size

Corollary:
If you want to show some L is not solvable
in polynomial time, suffices to show it is not
solvable by polynomial-size circuit families.

In the '80s, this was viewed as the approach
that would solve P versus NP.

“Just” have to show that SAT doesn’t have
polynomial-size circuit families.

Shannon’s Theorem 1: ‘
Every n-bit Boolean function has an ?

A/V/[— circuit of size O(2"/n)

Shannon’s Theorem 2:
Almost every n-bit Boolean function
requires a circuit of size Q(2"/n)

(even when all fan-in 2 gates are allowed)

“Essentially all computational problems
require exponential circuit complexity.”

26



Shannon’s Theorem 2:
Almost every n-bit Boolean function
requires a circuit of size Q(2"/n).
Proof:

Let s = (1/4) 2"/n. We'll show: There are < (1.5)2n circuits of size s.
But there are way more n-bit Boolean functions: 22"

Think of the “programming language” form of a size-s circuit.

After the n input gates, we have s more lines. Each defined by a
gate type (16 choices) and two previous lines (< n+s choices).

So there are at most [16 - (n+s) - (n+s)]° possible circuits.

The [-+] quantity is < 64s2 because n+s < 2s, and 64s2 < (2")2 for
large n. So there are at most [(2")2]5 = 22ns = 2(1/2) 2" = (1 41..,)2"
size-s circuits and most n-bit Boolean functions need a larger size.

Shannon’s Theorem 2:
Almost every n-bit Boolean function
requires a circuit of size Q(2"/n).

“Essentially all computational problems
require exponential circuit complexity.”

So... what's an example of one?
If SAT is an example, we resolve P versus NP!

Or... can we just find any explicit example?!

Challenge: Find an explicit n-bit function
requiring large circuit size.

Shannon: Practically all functions need Q(2"/n).

1965: Kloss & Malyshev show a certain simple
function requires size = 2n -3

1977: Paul & Stockmeyer show certain simple
functions requires size > 2.5n —1.5

1984: N. Blum showed a certain pretty simply
function requires size = 3n —3




Consider n = 50

Shannon: Practically all functions

1965: Kloss & Malyshev show a certain simple
function requires size = 2n -3

1977: Paul & Stockmeyer show certain simple
functions requires size > 2.5n —-1.5

1984: N. Blum showed a certain pretty simple

function requires size 2=

1965: Kloss & Malyshev show a certain simple
function requires size = 2n -3

1977: Paul & Stockmeyer show certain simple
functions requires size = 2.5n —1.5

1984: N. Blum showed a certain pretty simple
function requires size = 3n —3

Good news!!

2016: Find, Golevnev, Hirsch, Kulikov
showed a certain function requires size
> (3+1/g6)n —0O(n8)

This pretty much sums up
where we are on P versus NP.

28



Definitions:
Study Guide Boolean formulas
Truth tables
Boolean functions
The SAT problem
Circuits
Circuit familes & size

Theorems:

Every function can be
computed by a DNF
Almost every function

requires circuits of
size Q(2"/n).
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