

Exponential running time examples
Subset Sum Problem
Theorem Proving Problem
Traveling Salesperon Problem (TSP)
Satisfiability Problem (SAT)
Circuit Satisfiability Problem (Circuit-SAT)
Sudoku Problem

In our quest to understand efficient computation, we come across:	
P vs NP problem	
Biggest open problem in all of Computer Science. One of the biggest open problems in all of Mathematics.	

So what is the P vs NP question? The P vs NP question is the following:

Į	Ļ	
G	bal	
4		
	T	

-	

Revisiting	reductions
A central concept for compari	ng the "difficulty" of problems. differs based on context
Right now we are interested ir	n poly-time decidability vs not poly-time decidability
Want to define: $A \le B$	(<i>B</i> is at least as hard as <i>A</i> w.r.t. poly-time decidability.)

Revisiting reductions

Example

A:

Given a graph and an integer k, does there exist at least k pairs of vertices connected to each other? (by a path)

B:

Given a graph and a pair of vertices (s,t), are s and t connected?

Revisiting reductions

The 2 sides of reductions

1. Expand the landscape of tractable problems.

Revisiting reductions

The 2 sides of reductions

2. Expand the landscape of intractable problems.

Definition of C -hard

Definition of C -complete	

Definitions of C -hard and C -complete
Observation: Suppose A is C-complete.
2 possible worlds

Finding the right complexity class C
Try I:
<u>Try 2:</u>

A complexity class fo	r BFS?
What would be a reasonable definition "class of problems decidable us	
What is common about SAT, Theorem Proving, TSP, Sudoku, etc.	?

The complexity class NP	
Informally:	

Poll: Test your intuition
Which of these are in NP ?
- Subset Sum
- TSP
- SAT
- Circuit-SAT
- Sudoku
- HALTS
- $\{0^k 1^k : k \in \mathbb{N}\}$

Formal definition of NP

Examples of languages in NP
CLIQUE Input : $\langle G, c \rangle$ where G is a graph and c is a positive int. Output : Yes iff G contains a clique of size c.
Fact: CLIQUE is in NP.

	Examples of languages in NP	
Proof:	We need to show a verifier TM V exists as specified in the definition of NP .	
def V	f(x,u):	

Examples of languages in NP
Proof (continued): Need to show:
1.
2.
3.

Examples of languages in NP
Proof (continued):Need to show:I. if $x \in CLIQUE$, there is some proof u (of poly-length)that makes V ACCEPT.

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

Karp's 21 NP-complete problems

Partition

Knapsack

1972: "Reducibility Among Combinatorial Problems"

0-1 Integer Programming
Clique
Set Packing
Vertex Cover
Set Covering
Feedback Node Set
Feedback Arc Set
Directed Hamiltonian Cycle
Undirected Hamiltonian Cycle
3SAT

Steiner Tree **3-Dimensional Matching** Job Sequencing Max Cut Chromatic Number

Some other "interesting" examples

Super Mario Bros

Given a Super Mario Bros level, is it completable?

Tetris

Given a sequence of Tetris pieces, and a number k, can you clear more than k lines?

The P vs NP Question

The two possible worlds	

	Wh	at do ex	perts th	ink?	
# res	polls from 20 spondents in 2 spondents in 2	2002: 100)		
2002 2012	P≠NP 61(61%) 126 (83%)	P = NP 9(9%) 12 (9%)	$[Ind \\ 4(4\%) \\ 5 (3\%) \\ [5]$	$\begin{array}{c} {\rm DC} \\ 1(1\%) \\ 5 \ (3\%) \end{array}$	DK 22(22%) 1(0.6%)

What does NP stand for anyway?	