

A Quick Review

Summary so far

- How do you identify *intractable* problems? (problems not in P) e.g. SAT, TSP, Subset-Sum, ...
- Poly-time reductions $A \leq_T^P B$ are useful to compare hardness of problems.
- Evidence for intractability of A: Show $L \leq_T^P A$, for <u>all</u> $L \in \mathbb{C}$, for a large class \mathbb{C} .

Karp reduction

NP-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

Make one call to M_B and directly use its answer as output. We must have:

Karp reduction picture

Karp reduction: Example
CLIQUE Input : $\langle G, k \rangle$ where G is a graph and k is a positive int. Output : Yes iff G contains a clique of size k.
INDEPENDENT-SET (IS) Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains an independent set of size k.
Fact : CLIQUE \leq_m^P IS.

Karp reduction: Example
Proof:
We need to:
I. Define a map $f:\Sigma^* o\Sigma^*.$
2. Show $w \in CLIQUE \implies f(w) \in IS$
3. Show $w \not\in CLIQUE \implies f(w) \notin IS$ (often easier to argue the contrapositive)
4. Argue f is computable in polynomial time.

Karp reduction: Example	
Proof (continued):	
$\underbrace{\text{I. Define a map } f: \Sigma^* \to \Sigma^*.}$	
def $f(w)$:	

Karp reduction: Example	
Proof (continued):	
$\underline{\text{2. Show } w \in \text{CLIQUE}} \implies f(w) \in \text{IS}$	

Karp reduction: Example	
Proof (continued):	
3. Show $w \notin CLIQUE \implies f(w) \notin IS$	
(Show the contrapositive.)	

Karp reduction: Example
Proof (continued):
4. Argue f is computable in polynomial time.
 checking if the input is a valid encoding can be done in polynomial time. (for any reasonable encoding scheme)
- creating E^* , and therefore G^* , can be done in polynomial time.

Can define NP-hardness with respect to \leq_T^P . (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_m^P . (what experts use)

These lead to different notions of NP-hardness.

CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.
- CLIQUE is **NP**-hard.
 - 3SAT is **NP**-hard, so show 3SAT \leq_m^P CLIQUE.

CLIQUE is NP -complete: High level steps	
CLIQUE is in NP. 🗸	
We know 3SAT is NP -hard. So suffices to show 3SAT \leq_m^P CLIQUE.	
We need to:	
I. Define a map $f: \Sigma^* \to \Sigma^*$.	
2. Show $w \in 3SAT \implies f(w) \in CLIQUE$	
3. Show $w \not\in 3SAT \implies f(w) \notin CLIQUE$	
4. Argue f is computable in polynomial time.	

3SAT \leq CLIQUE: Defining the map	
I. Define a map $f: \Sigma^* \to \Sigma^*$.	
not valid encoding of a 3SAT formula $\ \mapsto \ \epsilon$	
otherwise we have valid 3SAT formula φ (with <i>m</i> clauses).	
$arphi\mapsto \langle G,k angle$ (we set $\ k=m$)	
Construction demonstrated with an example.	

3SAT < CLIOLIE: Why it works	
If G_{φ} contains an <i>m</i> -clique, then φ is satisfiable:	
G_{arphi} has a clique K of size $m \implies$	
$\implies \varphi$ is satisfiable.	

$3SAT \leq CLIQUE$: Poly-time reduction?	
Creation of G_{φ} is poly-time:	
Creating the vertex set:	
 there is just one vertex for each literal in each clause. scan input formula and create the vertex set. 	
Creating the edge set:	
- there are at most ${\sf O}(m^2)$ possible edges.	
 scan input formula to determine if an edge should be present. 	

Recall
Theorem: Let $f : \{0,1\}^* \to \{0,1\}$ be a decision problem which can be decided in time $O(T(n))$.
Then it can be computed by a circuit family of size $O(T(n)^2)$.
Given a TM V , we can create a circuit family that has the same behavior as V .
With this Theorem, it is actually easy to prove that CIRCUIT-SAT is NP -hard.

Proof Sketch	
WTS : for an arbitrary L in NP , $L \leq_m^P CIRCUIT-SAT$.	