| 5-25 I: Great Ideas in Theoretical Computer Science

Lecture 16: NP and NP-completeness 2

October 23rd, 2018

A Quick Review

You come across a problem you cannot solve.
What do you do?
Could it be in \mathbb{P} ?

I can't find an efficient algorithm, but neither can all these famous people.
Is there a deep reason why the problem seems to be hard?

Summary so far

- How do you identify intractable problems?
(problems not in P) e.g. SAT, TSP, Subset-Sum, ...
- Poly-time reductions $A \leq_{T}^{P} B$ are useful to compare hardness of problems.
- Evidence for intractability of A :

Show $L \leq_{T}^{P} A$, for all $L \in \mathbf{C}$, for a large class \mathbf{C}.

Summary so far

$$
\begin{gathered}
\left.\begin{array}{ll}
A & \\
& \leq_{T}^{P} A \\
\hline
\end{array}\right] \text { is C-complete } \\
\\
\mathbf{C}=\mathbf{P} \Longleftrightarrow A \in \mathbb{P}
\end{gathered}
$$

Summary so far

2 possible worlds

Summary so far

- The complexity class NP (take $\mathbf{C}=\mathbf{N} \mathbf{P}$)

Summary so far

Which languages L are in NP?
I. Every x in L has (at most) exponentially large "possible solutions space"

2. Easy (poly-time) to verify whether a possible solution is indeed a solution or not.

Summary so far

- NP-hardness, NP-completeness
- Cook-Levin Theorem: CIRCUIT-SAT is NP-complete $\mathbf{N P} \begin{gathered}\text { CIRCUIT-SAT } \\ \mathbb{P}\end{gathered} \quad \leq_{T}^{P} \quad$ CIRCUIT-SAT
- Many other languages are NP-complete.
- The \mathbf{P} vs NP question

First:
An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

$$
A \leq_{T}^{P} B
$$

"You can solve A in poly-time using a blackbox that solves B."
You can call the blackbox poly(|x|) times.

Karp reduction

NP-hardness is usually defined using Karp reductions.
Karp reduction (polynomial-time many-one reduction):

$$
A \leq_{m}^{P} B
$$

Make one call to M_{B} and directly use its answer as output. We must have:

Karp reduction picture

Karp reduction: Example
 CLIQUE

Input: $\langle G, k\rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)

Input: $\langle G, k\rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains an independent set of size k.

Fact: CLIQUE \leq_{m}^{P} IS.

Karp reduction: Example

Want:

$$
\langle G, k\rangle \stackrel{f}{\mapsto}\left\langle G^{\prime}, k^{\prime}\right\rangle
$$

G has a clique of size k iff G^{\prime} has an ind. set of size k,

G
G^{\prime}

Karp reduction: Example

Proof:

We need to:

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ CLIQUE $\Longrightarrow f(w) \in$ IS
3. Show $w \notin$ CLIQUE $\Longrightarrow f(w) \notin$ IS
(often easier to argue the contrapositive)
4. Argue f is computable in polynomial time.

Karp reduction: Example

Proof (continued):

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
def $f(w)$:

Karp reduction: Example

Proof (continued):

2. Show $w \in$ CLIQUE $\Longrightarrow f(w) \in$ IS

Karp reduction: Example

Proof (continued):

3. Show $w \notin$ CLIQUE $\Longrightarrow f(w) \notin$ IS
(Show the contrapositive.)

Karp reduction: Example

Proof (continued):

4.Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in polynomial time.
(for any reasonable encoding scheme)
- creating E^{*}, and therefore G^{*}, can be done in polynomial time.

Can define NP-hardness with respect to \leq_{T}^{P}. (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_{m}^{P}. (what experts use)

These lead to different notions of NP-hardness.

Poll

Which of the following are true?

- 3COL $\leq_{m}^{P} 2 \mathrm{COL}$ is known to be true.
- 3COL \leq_{m}^{P} 2COL is known to be false.
$-3 \mathrm{COL} \leq_{m}^{P} 2 \mathrm{COL}$ is open.
$-2 \mathrm{COL} \leq_{m}^{P} 3 \mathrm{COL}$ is known to be true.
- 2COL $\leq_{m}^{P} 3 \mathrm{COL}$ is known to be false.
$-2 \mathrm{COL} \leq_{m}^{P} 3 \mathrm{COL}$ is open.
- if $A \leq_{m}^{P} B$ and $B \in \mathbb{N} \mathbf{P}$, then $A \in \mathbf{N} \mathbf{P}$.

CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.
- CLIQUE is NP-hard.

3SAT is NP-hard, so show 3SAT \leq_{m}^{P} CLIQUE.

Definition of 3SAT

3SAT
Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

```
e.g.:
    \(\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg x_{5} \vee x_{6}\right)\)
        a clause
    literal: a variable or its negation
        (an OR of literals)
conjunctive normal form: AND of clauses.
```

Output: Yes iff the formula is satisfiable.

Aside: 3SAT is in NP

$\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg x_{5} \vee x_{6}\right)$
φ satisfiable
\Longleftrightarrow
can pick one literal from each clause and set them to True

$$
\Longleftrightarrow
$$

the sequence of literals picked does not contain both a variable and its negation.

What is a good proof that $\varphi \in$ 3SAT ?

CLIQUE is NP-complete: High level steps

CLIQUE is in NP.

We know 3SAT is NP-hard.
So suffices to show 3 SAT \leq_{m}^{P} CLIQUE.

We need to:

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ 3SAT $\quad \Longrightarrow f(w) \in$ CLIQUE
3. Show $w \notin$ 3SAT $\quad \Longrightarrow \quad f(w) \notin$ CLIQUE
4. Argue f is computable in polynomial time.

3SAT \leq CLIQUE: Defining the map

$\underline{\text { I. Define a map } f: \Sigma^{*} \rightarrow \Sigma^{*} \text {. }}$
not valid encoding of a 3SAT formula $\longmapsto \epsilon$
otherwise we have valid 3SAT formula φ (with m clauses).

$$
\varphi \mapsto\langle G, k\rangle \quad \text { (we set } \quad k=m \text {) }
$$

Construction demonstrated with an example.

3SAT \leq CLIQUE: Defining the map

3SAT \leq CLIQUE: Why it works

If φ is satisfiable, then G_{φ} contains an m-clique:
φ is satisfiable \Longrightarrow
$\Longrightarrow \quad G_{\varphi}$ contains an m-clique.

3SAT \leq CLIQUE: Why it works

If G_{φ} contains an m-clique, then φ is satisfiable:
G_{φ} has a clique K of size $m \Longrightarrow$
$\Longrightarrow \varphi$ is satisfiable.

3SAT \leq CLIQUE: Poly-time reduction?

Creation of G_{φ} is poly-time:
Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $\mathbf{O}\left(m^{2}\right)$ possible edges.
- scan input formula to determine if an edge should be present.

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a decision problem which can be decided in time $O(T(n))$.
Then it can be computed by a circuit family of size $O\left(T(n)^{2}\right)$.

Given a TM V, we can create a circuit family that has the same behavior as V.

With this Theorem, it is actually easy to prove that CIRCUIT-SAT is NP-hard.
Proof Sketch
WTS: for an arbitrary L in NP, $\mathrm{L} \leq_{m}^{P}$ CIRCUIT-SAT.

