
 15-251: Great Ideas in
 Theoretical Computer Science

 Lecture 16: NP and NP-completeness 2

October 23rd, 2018

A Quick Review

You come across a problem you cannot solve.
What do you do?

Is there a deep reason why the problem
seems to be hard?

Could it be in P?

Summary so far
How do you identify intractable problems?
(problems not in P) e.g. SAT, TSP, Subset-Sum, …

Poly-time reductions are useful to compare
hardness of problems.

A P
T B

Evidence for intractability of :
Show , for all C, for a large class C. L P

T A
A

L 2

C

P
T A

P
A is C-hard

Summary so far

C

P
T A

P

A.
A is C-complete

() A 2C = P P

Summary so far

C-complete
C

P

 C
= C-complete
= P

2 possible worlds

Summary so far

The complexity class NP (take C = NP)

Summary so far

Which languages L are in NP?

1. Every x in L has
 (at most) exponentially large “possible solutions space”

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.

.

.

.

.

.
.

.

u

2. Easy (poly-time) to verify whether a possible solution
is indeed a solution or not.

Summary so far

NP-hardness, NP-completeness

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Many other languages are NP-complete.

The P vs NP question

NP
P

T CIRCUIT-SAT

P

CIRCUIT-SAT.

Every L in NP
Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IS

First:
An important note about reductions

Cook reduction

“You can solve A in poly-time
 using a blackbox that solves B.”

x
Yes
or

No

y

MA

MB
Yes
or

No

You can call the blackbox poly(|x|) times.

Cook reductions: poly-time Turing reductions

A BP
T

Karp reduction

NP-hardness is usually defined using Karp reductions.

Make one call to MB and directly use its answer as output.

Karp reduction (polynomial-time many-one reduction):

A BP
m

MA

MB
input

or
Yes
Notransform

f
x f(x)

We must have:

Karp reduction picture

Karp reduction: Example

CLIQUE

Input: where G is a graph and k is a positive int.

Output: Yes iff G contains a clique of size k.
hG, ki

INDEPENDENT-SET (IS)

Input: where G is a graph and k is a positive int.

Output: Yes iff G contains an independent set of size k.
hG, ki

Fact: CLIQUE IS.P
m

Karp reduction: Example

G

G has a clique of size k iff G’ has an ind. set of size k’

Want:

G0

hG, ki 7! hG0, k0if

Karp reduction: Example

Proof:

1. Define a map .f : ⌃⇤ ! ⌃⇤

4. Argue is computable in polynomial time.f

2. Show CLIQUE IS=)w 2 f(w) 2

We need to:

3. Show CLIQUE IS=)w 62 f(w) 62
(often easier to argue the contrapositive)

Karp reduction: Example

Proof (continued):

def :f(w)

1. Define a map .f : ⌃⇤ ! ⌃⇤

Karp reduction: Example

Proof (continued):
2. Show CLIQUE IS=)w 2 f(w) 2

Karp reduction: Example

Proof (continued):

(Show the contrapositive.)

3. Show CLIQUE IS=)w 62 f(w) 62

Karp reduction: Example

Proof (continued):
4. Argue is computable in polynomial time.f

- checking if the input is a valid encoding can be done in
 polynomial time.
 (for any reasonable encoding scheme)

- creating E*, and therefore G*, can be done in
 polynomial time.

Can define NP-hardness with respect to .P
T

Can define NP-hardness with respect to .P
m

These lead to different notions of NP-hardness.

(what experts use)

(what some courses use for simplicity)

Poll

Which of the following are true?

- 3COL 2COL is known to be true.

- 3COL 2COL is known to be false.

P
m

P
m

- 3COL 2COL is open.P
m

- 2COL 3COL is known to be true.

- 2COL 3COL is known to be false.

P
m

P
m

- 2COL 3COL is open.P
m

- if and NP, then NP. A P
m B B 2 A 2

CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.

- CLIQUE is NP-hard.

3SAT is NP-hard, so show 3SAT CLIQUE.P
m

Definition of 3SAT

3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)
e.g.:

literal: a variable or its negation

Aside: 3SAT is in NP

What is a good proof that 3SAT ? ' 2

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)' =

' satisfiable

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain
both a variable and its negation.

CLIQUE is NP-complete: High level steps

CLIQUE is in NP.

1. Define a map .f : ⌃⇤ ! ⌃⇤

4. Argue is computable in polynomial time.f

3. Show 3SAT CLIQUE=)w 62 f(w) 62

2. Show 3SAT CLIQUE=)w 2 f(w) 2

We need to:

We know 3SAT is NP-hard.
So suffices to show 3SAT CLIQUE.P

m

3SAT ≤ CLIQUE: Defining the map

f : ⌃⇤ ! ⌃⇤

otherwise we have valid 3SAT formula
(with m clauses).

'

Construction demonstrated with an example.

1. Define a map .

not valid encoding of a 3SAT formula ✏7!

' 7! hG, ki (we set)k = m

3SAT ≤ CLIQUE: Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

k = 3

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

3SAT ≤ CLIQUE: Why it works

is satisfiable' =)

If is satisfiable, then contains an m-clique:' G'

=) contains an m-clique.G'

3SAT ≤ CLIQUE: Why it works

If contains an m-clique, then is satisfiable:'G'

 has a clique K of size mG' =)

=) ' is satisfiable.

3SAT ≤ CLIQUE: Poly-time reduction?

Creation of is poly-time:G'

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m2) possible edges.
- scan input formula to determine if an edge
 should be present.

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let be a decision problemf : {0, 1}⇤ ! {0, 1}
which can be decided in time O(T (n)).

Then it can be computed by a circuit family of size
O(T (n)2).

With this Theorem, it is actually easy to prove that

CIRCUIT-SAT is NP-hard.

Given a TM V, we can create a circuit family

that has the same behavior as V.

Proof Sketch

WTS: for an arbitrary L in NP, L CIRCUIT-SAT.P
m

