15-251: Great Ideas in
Theoretical Computer Science

Lecture 16: NP and NP-completeness 2

October 23rd, 2018

A Quick Review

You come across a problem you cannot solve.
What do you do?

Could it be in P?

| can't find an efficient algorithm, but neither can all these famous people.

Is there a deep reason why the problem
seems to be hard?

Summary so far

e How do you identify intractable problems?
(problems not in P) e.g. SAT, TSP, Subset-Sum, ...

e Poly-time reductions A <X B are useful to compare
hardness of problems.

o Evidence for intractability of A:
Show L S; A, forall L e C, foralarge class C.

C

<P A A is C-hard

a

Summary so far

<P A A is C-complete

5 e

C=P <= Acp

Summary so far

2 possible worlds

C
c

= C-complete

E] =p

Summary so far

® The complexity class NP (take € =NP)

Summary so far
Which languages L are in NP?

|.Every zin L has
(at most) exponentially large “possible solutions space”

2. Easy (poly-time) to verify whether a possible solution
is indeed a solution or not.

Summary so far

® NP-hardness, INP-completeness

® Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

NP (CcIRCUIT-SAT

*)

® Many other languages are NP-complete.

<P CIRCUIT-SAT

® The P vs NP question

Every L in NP
lCook-Levin Theorem

CIRCUIT-SAT

3SAT 3COL

'

SUBSET-SUM CLIQUE

o~

VERTEX-COVER IS

HAMILTONIAN-CYCLE

|

TSP

First:
An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

My
Yes
y—| Mp | or Yes
r—> No — or
No

“You can solve A in poly-time
using a blackbox that solves B’

You can call the blackbox poly(|x|) times.

Karp reduction

INP-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

M 4
f Yes
x | transform [f(:E) = Mp > ﬁ"
input °

Make one call to Mp and directly use its answer as output.

We must have:

Karp reduction picture

Karp reduction: Example

CLIQUE

Input: (G, k) where G is a graph and £ is a positive int.
Output: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)

Input: (G, k) where G is a graph and £ is a positive int.
Output: Yes iff G contains an independent set of size £.

Fact: CLIQUE <P Is.

Karp reduction: Example
Want:

(G, k) i> (G, K"

G has a clique of size k iff G’ has an ind. set of size £’

G G

Karp reduction: Example

Proof:

We need to:
|.Defineamap f: X% — X%
2.Show w € CLIQUE = f(w) € IS
3.Show w € CLIQUE = f(w) € IS

(often easier to argue the contrapositive)

4.Argue f is computable in polynomial time.

Karp reduction: Example

Proof (continued):

|.Defineamap f: X" — X%

def f(w):

Karp reduction: Example

Proof ntin :
2.Show w € CLIQUE = f(w) € IS

Karp reduction: Example

Proof (continued):
3.Show w & CLIQUE = f(w) € IS

(Show the contrapositive.)

Karp reduction: Example
Proof (continued):

4.Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in
polynomial time.
(for any reasonable encoding scheme)

- creating F*, and therefore G*, can be done in
polynomial time.

Can define NP-hardness with respect to <I.

(what some courses use for simplicity)

Can define NP-hardness with respect to <% .

(what experts use)

These lead to different notions of NP-hardness.

Poll

Which of the following are true?

-3COL S,i 2COL is known to be true.
-3COL < 2COL is known to be false.
-3COL <} 2COL is open.

-2COL <P 3COL is known to be true.
-2COL S,i 3COL is known to be false.
-2COL <} 3coL is open.

-if A<l B and B € NP, then A € NP.

CLIQUE is NP-complete

Want to show:
- CLIQUE is in NP.

- CLIQUE is NP-hard.
3SAT is NP-hard, so show 3SAT <. CLIQUE.

Definition of 3SAT
3SAT

Input: A Boolean formula in “conjunctive normal form’
in which every clause has exactly 3 literals.

’

e.g.
(.’El V) V .’173) A (_\.Il V Ty V 335) A (JIQ V —T5 V ‘TG)

N — e’
a clause literal: a variable or its negation

(an OR of literals)

conjunctive normal form: AND of clauses.

Output: Yes iff the formula is satisfiable.

Aside: 3SAT isin NP

o =(x1V-ozaVas) Az VayVas) A(zeV-xsVxe)

¥ satisfiable
—
can pick one literal from each clause and set them to True

—
the sequence of literals picked does not contain
both a variable and its negation.

What is a good proof that ¢ € 3SAT ?

CLIQUE is NP-complete: High level steps
CLIQUE is in NP. v/

We know 3SAT is NP-hard.
So suffices to show 3SAT <! CLIQUE.

We need to:

|.Defineamap f: 3% — ¥

2.Show w € 3SAT = f(w) € CLIQUE
3.Show w & 3SAT = f(w) & CLIQUE

4.Argue f is computable in polynomial time.

3SAT < CLIQUE: Defining the map
|.Defineamap f: X" — X%

not valid encoding of a 3SAT formula +> €

otherwise we have valid 3SAT formula ¢
(with m clauses).

v — (G, k) (weset k=m)

Construction demonstrated with an example.

3SAT < CLIQUE: Defining the map
A A

= (acl V X9 V ,%3) N (—wl V i) V .%'3) VAN (1'1 V i) V _|J}1)

$1 Xr1 1 k:?)

3SAT < CLIQUE: Why it works

If ¢ is satisfiable, then G, contains an m-clique:

@ s satisfiable =—

= (, contains an m-clique.

3SAT < CLIQUE: Why it works

If G, contains an m-clique, then ¢ is satisfiable:

G, hasaclique K ofsize m =

= ¢ is satisfiable.

3SAT < CLIQUE: Poly-time reduction?

Creation of G, is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m?) possible edges.

- scan input formula to determine if an edge
should be present.

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let f: {0,1}* — {0,1} be a decision problem
which can be decided in time O(T'(n)).

Then it can be computed by a circuit family of size
O(T(n)*).

Given aTM V, we can create a circuit family
that has the same behavior as V.

With this Theorem, it is actually easy to prove that
CIRCUIT-SAT is NP-hard.

Proof Sketch
WTS: for an arbitrary Lin NP, L SSL CIRCUIT-SAT.

