15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 17

Approximation Algorithms

HELP VERE LOST
HELP **CAR SA*** AND WIN CASH

sat given a Boolean formula F, is it satisfiable?

3SAT same, but F is a 3-CNF

Vertex-Cover given G and k, are there k vertices which touch all edges?

Clique are there k vertices all connected?

Max-Cut is there a vertex 2-coloring with at least k "cut" edges?

Hamiltonian-Cycle is there a cycle touching each vertex exactly once?

SAT ... is NP-complete

3SAT ... is NP-complete

Vertex-Cover ... is NP-complete

Clique ... is NP-complete

Max-Cut ... is NP-complete

HamiltonianCycle

	vs. Optimization/Search	
	be a class of decision problems .	
Usually there is	s a natural 'optimization' version.	
3SAT	Given a 3-CNF formula, is it satisfiable?	
Vertex-Cover	Given G and k, are there k vertices which touch all edges?	
Clique	Given G and k, are there k vertices which are all mutually connected?	
Max-Cut	Is there a vertex 2-coloring with at least k "cut" edges?	
Hamiltonian- Cycle	Is there a cycle touching each vertex exactly once?	
		_
Decision	vs. Optimization/Search	
	be a class of decision problems .	
	s a natural 'optimization' version.	
osaany enere is	o d Hatarar optimization version.	
3SAT		
Vertex-Cover	Given G, find the size of the smallest $S \subseteq V$ touching all edges.	
Clique	Given G, find the size of the largest clique (set of mutually connected vertices).	
Max-Cut	Given G, find the largest number of edges 'cut' by some vertex 2-coloring.	
Hamiltonian- Cycle		
		_
Decision	vs. Optimization/Search	
NP defined to b	be a class of decision problems .	
Usually there is	s a natural 'optimization' version.	
3SAT	Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.	
Vertex-Cover	Given G, find the size of the smallest S ⊆ V touching all edges.	
Clique	Given G, find the size of the largest clique (set of mutually connected vertices).	
Max-Cut	Given G, find the largest number of edges 'cut' by some vertex 2-coloring.	
Hamiltonian- Cycle		

Decision vs. Optimization/Search NP defined to be a class of **decision problems**. Usually there is a natural 'optimization' version. Given a 3-CNF formula, find the largest number 3SAT of clauses satisfiable by a truth assignment. Given G, find the size of the smallest $S \subseteq V$ touching all edges. Given G, find the size of the largest clique (set of mutually connected vertices). Clique Given G, find the largest number of edges 'cut' by some vertex 2-coloring. Given G with edge costs, find the cost of the cheapest cycle touching each vertex once. **Decision vs. Optimization/Search** NP defined to be a class of **decision problems**. Usually there is a natural 'optimization' version and a natural 'search' version. Given a 3-CNF formula, find a truth assignment with the largest number of satisfied clauses. ЗЅДТ Given G, find the smallest $S \subseteq V$ touching all edges. Given G, find the largest clique (set of mutually connected vertices). Given G, find the vertex 2-coloring which 'cuts' the largest number of edges. Max-Cut Given G with edge costs, find the cheapest cycle touching each vertex once. **Decision vs. Optimization/Search** NP defined to be a class of **decision problems**. Usually there is a natural 'optimization' version and a natural 'search' version. Technically, the 'optimization' or 'search' versions cannot be in NP, since they're not languages. We often still say they are NP-hard. This means: if you could solve them in poly-time, then you could solve any NP problem in poly-time.

Why???

Decision vs. Optimization/Search

More interestingly the opposite is usually true too: Given an efficient solution to the decision problem we can solve the 'optimization' and 'search' versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via binary search.

Find a solution (e.g., satisfying assignment) by setting variables one by one an, testing each time if there is still a good assignment.

SAT ... is **NP-complete**

3SAT ... is NP-complete

Vertex-Cover ... is NP-complete

Clique ... is NP-complete

Max-Cut ... is **NP-complete**

Hamiltonian- ... is **NP-complete**Cycle

INVENTS BEAUTIFUL THEORY OF ALGORITHMIC COMPLEXITY EVERYTHING IS NP-COMPLETE

Vertex-Cover
Given graph $G = (V,E)$ and number k , is there a size- k "vertex-cover" for G ?
$(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$
G has a vertex-cover of size 3.

Vertex-Cover			
Given graph $G = (V,E)$ and number k, is there a size-k "vertex-cover" for G ?			
$(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$			
G has no vertex-cover of size 2. (Because you need ≥ 1 vertex per yellow edge.)			

Vertex-Cover

Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

The Vertex-Cover problem is NP-complete. 🕾

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Subexponential-time algorithms: Brute-force tries all 2^n subsets of n vertices. Maybe there's an $O(1.5^n)$ -time algorithm. Or $O(1.1^n)$ time, or $O(2^{n\cdot 1})$ time, or... Could be quite okay if n=100, say. As of 2010: there **is** an $O(1.28^n)$ -time algorithm.

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Special cases:

Solvable in poly-time for...

tree graphs,

bipartite graphs,

"series-parallel" graphs...

Perhaps for "graphs encountered in practice"?

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up	_
Approximation algorithms:	
Try to find pretty small vertex-covers.	_
Still want polynomial time, and for all graphs.	
→ assuming "P ≠ NP", there is no algorithm running in polynomial time	
which, for all graphs G,	
finds the <mark>minimum</mark> size vertex-cover.	
	I
Gavril's Approximation Algorithm	
Easy Theorem (from 1976):	
There is a polynomial-time algorithm that,	
given any graph $G = (V,E)$, outputs a vertex-cover $S \subseteq V$ such that	
S ≤ 2 S*	
where S* is the smallest vertex-cover.	
"A factor 2-approximation for Vertex-Cover."	
	I
Let's recall a similar situation from Lecture 10:	
My favorite problem, Max-Cut.	

Max-Cut

Input: A graph G=(V,E).

0<u>-</u>2 | 3 | 4<u>-</u>5

Output: A "2-coloring" of V:

each vertex designated yellow or blue.

Goal: Have as many **cut** edges as possible.

An edge is cut if its endpoints have

different colors.

Max-Cut

Input: A graph G=(V,E).

Output: A "2-coloring" of V:

each vertex designated yellow or blue.

Goal: Have as many **cut** edges as possible.

An edge is cut if its endpoints have

different colors.

Max-Cut

On one hand:

Finding the **MAX**-Cut is NP-hard.

On the other hand:

Polynomial-time "Local Search" algorithm guarantees cutting $\geq \frac{1}{2}|E|$ edges.

In particular:

(# cut by Local Search) $\ge \frac{1}{2}$ (max # cuttable)

"A factor ½-approximation for Max-Cut."

Max-Cut

В١	1	۲h	Δ.	14/	۵,	7.
ים	/	LII	е.	w	a:	ν.

Goemans and Williamson (1994) gave a polynomial-time

0.87856-approximation

for Max-Cut.

It is very beautiful, but pretty difficult!

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There's no poly-time algorithm to find the optimal solution unless P = NP.)

But from the point of view of finding approximately optimal solutions, there is an intricate, fascinating, and wide range of possibilities...

Today: A case study of approximation algorithms

- 1. A somewhat good approximation algorithm for Vertex-Cover.
- 2. A pretty good approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

- 1. A somewhat good approximation algorithm for Vertex-Cover.
- 2. A pretty good approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

Vertex-Cover

Given graph G = (V,E) try to find the smallest "vertex-cover" for G.

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)

S ← Ø

while **not** all edges marked as "covered" find $v \in V$ touching most unmarked edges $S \leftarrow S \cup \{v\}$

mark all edges v touches

GreedyVC example			
Done. Vertex-cover size 3 (optimal) ©.			

GreedyVC analysis

Correctness:

✓ Always outputs a **valid** vertex-cover.

Running time:

✓ Polynomial time.

Solution quality:

This is the interesting question.

There must be some graph G where it doesn't find the **smallest** vertex-cover.

Because otherwise... P = NP!

A bad graph for GreedyVC Smallest? 3

Even worse graph for GreedyVC Well... it's a good homework problem. We know GreedyVC is not a 1.74-approximation. Fact: GreedyVC is not a 2.08-approximation. Fact: GreedyVC is not a 3.14-approximation. Fact: GreedyVC is not a 42-approximation. Fact: GreedyVC is not a 999-approximation.

Greed is Bad (for Vertex-Cover)

Theorem: ∀C, GreedyVC is **not** a C-approximation.

In other words:

For any constant C,

there is a graph G such that

 $|GreedyVC(G)| > C \cdot |Min-Vertex-Cover(G)|$.

Gavril to the rescue

GavrilVC(G)

 $S \leftarrow \emptyset$

while **not** all edges marked as "covered" let {v,w} be any unmarked edge

 $S \leftarrow S \cup \{v,w\}$?

mark all edges v,w touch

GavrilVC example

Theorem: GavrilVC is a 2 -approximation for Vertex-Cover.
Proof:
Say GavrilVC(G) does T iterations. So its $ S = 2T$.
Say it picked edges $e_1, e_2,, e_T \in E$.
Key claim : $\{e_1, e_2,, e_T\}$ is a matching.
Because when e is picked, it's unmarked,
so its endpoints are not among $e_1,, e_{i-1}$.
So any vertex-cover must have ≥ 1 vertex from each e_i .
Ĭ Ĭ/Ĭ
\circ \circ \circ

Theorem: GavrilVC is a **2**-approximation for Vertex-Cover. Say GavrilVC(G) does T iterations. So its |S| = 2T. Say it picked edges e_1 , e_2 , ..., $e_T \in E$. **Key claim**: $\{e_1, e_2, ..., e_T\}$ is a <u>matching</u>. Because... when $\mathbf{e}_{\mathbf{j}}$ is picked, it's unmarked, so its endpoints are not among $e_1, ..., e_{j-1}$. So **any** vertex-cover must have ≥ 1 vertex from each e_i . Including the **minimum** vertex-cover S*, whatever it is. Thus $|S^*| \ge T$. So for Gavril's final vertex-cover S, $|S| = 2T \le 2|S^*|.$ Today: A case study of approximation algorithms 1. A 2-approximation algorithm for Vertex-Cover. 2. A pretty good approximation algorithm for the "k-Coverage Problem". 3. Some very good approximation algorithms for TSP. Today: A case study of approximation algorithms 1. A 2-approximation algorithm for Vertex-Cover. 2. A pretty good approximation algorithm for the "k-Coverage Problem". 3. Some very good approximation algorithms for TSP.

"k-Coverage" problem "Pokémon-Coverage" problem Let's say you have some Pokémon, and some trainers, each having a subset of Pokémon. Given k, choose a team of k trainers to maximize the # of distinct Pokémon. "Pokémon-Coverage" problem This problem is NP-hard. ⊗ Approximation algorithm? We could try to be greedy again... GreedyCoverage() for i = 1...kadd to the team the trainer bringing in the most new Pokémon, given the team so far

Example with k=3:						
	2 4	分份	*			
	20 3.	全				
₩ ₩ *	~ *					
30 Pokémon 6 trainers						
Optimum: 27 So Greedy is at best						
GreedyCoverage: 21 a 77.7%-approximation.						

Greea	is Pretty	Good	(for k-Coverag	ge)

Theorem:

GreedyCoverage is a **63**%-approximation for k-Coverage.

More precisely, 1-1/e where $e \approx 2.718281828...$

Proof: (Don't read if you don't want to.)

Let P^* be the Pokémon covered by the best k trainers. Define $r_i = |P^*| - \#$ Pokémon covered after i steps of Greedy. We'll prove by induction that $r_i \leq (1-1/k)^{i} \cdot |P^*|$. The base case i=0 is clear, as $r_0 = |P^*|$. For the inductive step, suppose Greedy enters its ith step. At this point, the number of uncovered Pokémon in P^* must $be \geq r_{i-1}$. We know there are some k trainers covering all these Pokémon. Thus one of these trainers must cover at least r_{i-1}/k of them. Therefore the trainer chosen in Greedy's ith step will cover $\geq r_{i-1}/k$ Pokémon. Thus $r_i \leq r_{i-1} - r_{i-1}/k = (1-1/k) \cdot r_{i-1} \leq (1-1/k) \cdot (1-1/k) \cdot |P^*|$ by induction. Thus we have completed the inductive proof that $r_i \leq (1-1/k)^{i_i} \cdot |P^*|$. Therefore the Greedy algorithm terminates with $r_k \leq (1-1/k)^{i_k} \cdot |P^*|$. Since $1-1/k \leq e^{-1/k}$ (Taylor expansion), we get $r_k \leq e^{-1} \cdot |P^*|$. Thus Greedy covers at least $|P^*| - e^{-1} \cdot |P^*| = (1-1/e) \cdot |P^*|$ Pokémon. This completes the proof that Greedy is a (1-1/e)-approximation algorithm.

A case study of Today: approximation algorithms 1. A 2-approximation algorithm for Vertex-Cover. 2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem". 3. Some very good approximation algorithms for TSP. Today: A case study of approximation algorithms 1. A 2-approximation algorithm for Vertex-Cover. 2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem". 3. Some very good approximation algorithms for TSP. **TSP** (Traveling Salesperson Problem) Many variants. Most common is "Metric-TSP": Input: A graph G=(V,E) with edge costs. Output: A "tour": i.e., a walk that visits each vertex **at least** once, and starts and ends at the same vertex.

Goal:

Minimize total cost of tour.

TSP is probably the most famous NP-complete problem.

It has inspired many things...

'60s sitcom-themed household-goods conglomerate ad/contests HELP! WE'RE LOST! People genuinely want to solve large instances. Applications in: Schoolbus routing • Moving farm equipment Package delivery • Space interferometer scheduling • Circuit board drilling • Genome sequencing **Basic Approximation Algorithm:** The MST Heuristic Given G with edge costs... 1. Compute an **MST** T for G, rooted at any $s \in V$. 2. Visit the vertices via **DFS** from s.

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation. **Key Claim:** Optimal TSP cost ≥ MST Cost always.

This implies the Theorem, since MST Heuristic Cost = $2 \times MST$ Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.

Take any spanning tree from within these edges.

Its cost is at least the MST Cost.

Therefore the original TSP tour's cost is ≥ MST Cost.

Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor **1.5**-approximation algorithm for (Metric) TSP.

Proof is not **too** hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.3 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.1 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.01 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.001 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.0001 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1+ε approximation algorithm, for any $\varepsilon > 0$.

(Running time is like $O(n (log n)^{1/\epsilon})$.)

Euclidean-TSP: NP-hard, but not **that** hard

n > 10,000 is feasible

Can we do better?

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
- 3. A $(1+\epsilon)$ -approximation alg. for Euclidean-TSP.

Can we do better?

2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".

We cannot do better. (Unless P=NP.)

Theorem: For **any** $\beta > 1-1/e$, it is NP-hard to factor β -approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works. Proof length of reduction: ≈ 100 pages.

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

We have no idea if we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.): For any $\beta > 10\sqrt{5} - 21 \approx 1.36$, it is NP-hard to β-approximate Vertex-Cover.

Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur–Safra) Poly-time (Gavril)

Between 1.36 and 2: totally unknown.
Raging controversy.

Study Guide

Definitions:

Approximation algorithm.

The idea of "greedy" algorithms.

Algorithms and analysis:

Gavril algorithm for Vertex-Cover.

MST Heuristic for TSP.