15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 17

Approximation Algorithms

AT given a Boolean formula F,
> is it satisfiable?

3SAT same, but F is a 3-CNF

given G and k, are there k

Vertex-Cover h .
vertices which touch all edges?

Clique are there k vertices all connected?

Max-Cut is there a vertex 2-coloring with
at least k “cut” edges?

Hamiltonian- s there a cycle touching each
Cycle vertex exactly once?

SAT ... is NP-complete
3SAT ... is NP-complete
Vertex-Cover ... is NP-complete
Clique ... is NP-complete
Max-Cut ... is NP-complete

Hamiltonian- ... is NP-complete
Cycle

Decision vs. Optimization/Search
NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT Given a 3-CNF formula, is it satisfiable?

Given G and k, are there k

Vertex-Cover " 5
vertices which touch all edges?

Given G and k, are there k vertices

Clique
9 which are all mutually connected?

Max-Cut Is there a vertex 2-coloring with
at least k “cut” edges?

Hamiltonian- Is there a cycle touching each
Cycle vertex exactly once?

Decision vs. Optimization/Search
NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT

Vertex-Cover Given_G, find the size of the smallest S € V

touching all edges.

Clique Given G, find the size of the largest clique
(set of mutually connected vertices).

Max-Cut Given G, find the largest number of

edges ‘cut’ by some vertex 2-coloring.

Hamiltonian-
Cycle

Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

Given a 3-CNF formula, find the largest number
3SAT of clauses satisfiable by a truth assignment.

Vertex-Cover Given_G, find the size of the smallest S € V

touching all edges.

Clique Given G, find the size of the largest clique
(set of mutually connected vertices).

Max-Cut Given G, find the largest number of

edges ‘cut’ by some vertex 2-coloring.

Hamiltonian-
Cycle

Decision vs. Optimization/Search
NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

Given a 3-CNF formula, find the largest number

3SAT of clauses satisfiable by a truth assignment.

Vertex-Cover Given_G, find the size of the smallest S € V
touching all edges.
Clique Given G, find the size of the largest clique
(set of mutually connected vertices).
Max-Cut Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

TSP Given G with edge costs, find the cost of the
cheapest cycle touching each vertex once.

Decision vs. Optimization/Search
NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version
and a natural ‘search’ version.

Given a 3-CNF formula, find a truth assignment

3SAT with the largest number of satisfied clauses.

Ve CavEr Given_G, find the smallest S € V
touching all edges.
Clique Given G, find the largest clique
(set of mutually connected vertices).
Max-Cut Given G, find the vertex 2-coloring which ‘cuts’
the largest number of edges.

TSP Given G with edge costs, find the cheapest
cycle touching each vertex once.

Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version
and a natural ‘search’ version.

Technically, the ‘optimization’ or ‘search’ versions
cannot be in NP, since they’'re not languages.

We often still say they are NP-hard.
This means: if you could solve them in poly-time,
then you could solve any NP problem in poly-time.

Why???

Decision vs. Optimization/Search

More interestingly the opposite is usually true too:
Given an efficient solution to the decision problem
we can solve the ‘optimization’ and ‘search’
versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via

binary search.

Find a solution (e.g., satisfying assignment) by

setting variables one by one an, testing each
time if there is still a good assignment.

SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

.. is NP-complete

.. is NP-complete

.. is NP-complete

.. is NP-complete

.. is NP-complete

.. is NP-complete

INVENTS BERUTIFUL THEORY
OF ALGORITHMIC COMPLEXITY

>

EVERYTHING IS NP-COMPLETE

There is only one idea in this lecture:

s

¥ &

\Y

fr,
)

g .Z:v

Vertex-Cover

Given graph G = (V,E) and number k,
is there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)

G has a vertex-cover of size 3.

Vertex-Cover

Given graph G = (V,E) and number k,
is there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)

G has no vertex-cover of size 2.
(Because you need = 1 vertex per yellow edge.)

Vertex-Cover

Given graph G = (V,E) and number k,
is there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)
The Vertex-Cover problem is NP-complete. ®

= assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimume-size vertex-cover.

Never Give Up

Subexponential-time algorithms:
Brute-force tries all 2" subsets of n vertices.
Maybe there’'s an O(1.5")-time algorithm.
Or O(1.1") time, or O(2"") time, or...
Could be quite okay if n = 100, say.
As of 2010: there is an O(1.28")-time algorithm.

= assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimume-size vertex-cover.

Never Give Up

Special cases:
Solvable in poly-time for...
tree graphs,
bipartite graphs,
“series-parallel” graphs...

Perhaps for “graphs encountered in practice”?

= assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimume-size vertex-cover.

Never Give Up

Approximation algorithms:
Try to find pretty small vertex-covers.

Still want polynomial time, and for all graphs.

= assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum size vertex-cover.

Gavril’s Approximation Algorithm

Easy Theorem (from 1976):

There is a polynomial-time algorithm that,
given any graph G = (V,E),
outputs a vertex-cover S € V such that

S| =< 2|S7|

where S* is the smallest vertex-cover.

“A factor 2-approximation for Vertex-Cover.”

Let’s recall a similar situation from Lecture 10:

My favorite problem, Max-Cut.

Max-Cut

A graph G=(V,E).

A “2-coloring” of V:
each vertex designated yellow or blue.

Have as many cut edges as possible.
An edge is cut if its endpoints have
different colors.

Max-Cut

A graph G=(V,E).

A “2-coloring” of V:
each vertex designated yellow or blue.

Have as many cut edges as possible.
An edge is cut if its endpoints have
different colors.

Max-Cut

On one hand:
Finding the MAX-Cut is NP-hard.

On the other hand:
Polynomial-time “Local Search” algorithm

guarantees cutting = %2|E| edges.

In particular:
(# cut by Local Search) > Y2 (max # cuttable)

“A factor Y2-approximation for Max-Cut.”

Max-Cut

By the way:

Goemans and Williamson (1994) “'}
gave a polynomial-time

0.87856-approximation
for Max-Cut.

It is very beautiful, but pretty difficult!

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find
the optimal solution unless P = NP.)

But from the point of view of finding
approximately optimal solutions,
there is an intricate, fascinating, and wide
range of possibilities...

Today: A case study of
approximation algorithms

1. A somewhat good approximation algorithm
for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.

Today: A case study of
approximation algorithms

1. A somewhat good approximation algorithm
for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.

Vertex-Cover

Given graph G = (V,E) try to find the
smallest “vertex-cover” for G.

(S € Vis a “vertex-cover” if it touches all edges.)

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)
S« 0@
while not all edges marked as “covered”
find veV touching most unmarked edges
S«<Svu{v}
mark all edges v touches

10

GreedyVC example

GreedyVC example

(Break ties arbitrarily.)

GreedyVC example

11

GreedyVC example

Done. Vertex-cover size 3 (optimal) ©.

GreedyVC analysis

Correctness:
v Always outputs a valid vertex-cover.

Running time:
v Polynomial time.

Solution quality:
This is the interesting question.
There must be some graph G where it

doesn’t find the smallest vertex-cover.

Because otherwise... P = NP!

A bad graph for GreedyVC

Smallest?

12

A bad graph for GreedyVC

Smallest? So GreedyVC is not
a 1.33-approximation.

?
EE & (Because 1.33 < 4/3.)

A worse graph for GreedyVC

Smallest? ﬂ So GreedyVC is not
a 1.74-approximation.
(Because 1.74 < 21/12.)

GreedyVC? 21

Even worse graph for GreedyVC
Well... it's a good homework problem.
We know GreedyVC is not a 1.74-approximation.
Fact: GreedyVC is not a 2.08-approximation.
Fact: GreedyVC is not a 3.14-approximation.
Fact: GreedyVC is not a 42-approximation.

Fact: GreedyVC is not a 999-approximation.

Greed is Bad (for Vertex-Cover)

Theorem: VC, GreedyVC is not a C-approximation.

In other words:
For any constant C,
there is a graph G such that

|GreedyVC(G)| > C - |Min-Vertex-Cover(G)]|.

Gavril to the rescue

GavrilVC(G)
S«@
while not all edges marked as “covered”
let {v,w} be any unmarked edge
S«<Su{vw}?
mark all edges v,w touch

GavrilVC example

14

GavrilVC example

GavrilVC example

4

Smallest: So GavrilVC is at best

GavrilVC: a 2-approximation.

Theorem:
GavrilVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavrilVC(G) does T iterations. So its |S| = 2T.
Say it picked edges e;, €, ..., 7 € E. T
Key claim: {e;, e,, ..., et} is a matching.
Because... when € is picked, it's unmarked,
so its endpoints are not among ey, ..., €j_;.

So any vertex-cover must have > 1 vertex from each e;.

15

Theorem:
GavrilVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavrilVC(G) does T iterations. So its |S| = 2T.
Say it picked edges e;, €, ..., 7 € E. T
Key claim: {e;, e,, ..., et} is a matching.
Because... when € is picked, it's unmarked,
so its endpoints are not among ey, ..., €j_;.
So any vertex-cover must have > 1 vertex from each e;.
Including the minimum vertex-cover S*, whatever it is.
Thus |S*| = T.
So for Gavril’s final vertex-cover S,

IS| = 2T < 2|S7. B

Today: A case study of
approximation algorithms

. A 2-approximation algorithm for Vertex-Cover.

. A pretty good approximation algorithm
for the “k-Coverage Problem”.

. Some very good approximation algorithms
for TSP.

Today: A case study of
approximation algorithms

. A 2-approximation algorithm for Vertex-Cover.

. A pretty good approximation algorithm
for the “k-Coverage Problem”.

. Some very good approximation algorithms
for TSP.

“k-Coverage” problem

“Pokémon-Coverage” problem

Let’s say you have
some Pokémon,

and some trainers,

each having a
subset of Pokémon.

Given k, choose a

team of k trainers

to maximize the #
of distinct Pokémon.

“Pokémon-Coverage” problem

This problem is NP-hard. ®
Approximation algorithm?

We could try to be greedy again...

GreedyCoverage()
fori=1...k
add to the team the trainer bringing in the
most new Pokémon, given the team so far

17

Example with k=3:

30 Pokémon
6 trainers

Optimum: 27 So Greedy is at best
GreedyCoverage: 21 a 77.7%-approximation.

Greed is Pretty Good (for k-Coverage)

Theorem:
GreedyCoverage is a 63%-approximation
for k-Coverage.

More precisely, 1-1/e
where e = 2.718281828...

Proof: (Don'tread if you don’t want to.)

Let P* be the Pokémon covered by the best k trainers.

Define r; = |P*| — # Pokémon covered after i steps of Greedy.

We'll prove by induction that r; < (1-1/k)' - |P*|.

The base case i=0 is clear, as ry = |P*|.

For the inductive step, suppose Greedy enters its ith step.

At this point, the number of uncovered Pokémon in P* must be = r;_;.
We know there are some k trainers covering all these Pokémon.
Thus one of these trainers must cover at least r;_;/k of them.

Therefore the trainer chosen in Greedy’s ith step will cover > r,_;/k Pokémon.

Thus r; < ri_; — ri_y/k = (1-1/k)-r,_; < (1-1/k)-(1-1/k)":|P*| by induction.
Thus we have completed the inductive proof that r; < (1-1/k)! - |P*|.
Therefore the Greedy algorithm terminates with r, < (1—1/k)k- |P*|.

Since 1-1/k < e~k (Taylor expansion), we get r, < e~1-|P*|.

Thus Greedy covers at least |P*| — e~1:|P*| = (1—-1/e) - |P*| Pokémon.

This completes the proof that Greedy is a (1—1/e)-approximation algorithm.

18

Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

. A63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

. Some very good approximation algorithms
for TSP.

Today: A case study of
approximation algorithms

. A 2-approximation algorithm for Vertex-Cover.

. A63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

. Some very good approximation algorithms
for TSP.

TSP
(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP":

Input: A graph G=(V,E) with edge costs.

Output: A “tour”: i.e., a walk that visits each
vertex at least once, and starts and
ends at the same vertex.

Minimize total cost of tour.

19

TSP example

I+ 4+ + + + + + +

TSP is probably the most
famous NP-complete problem.

It has inspired many things...

Textbooks

The Traveling
Salesman Problem

The
TRAVELING
SALESMAN
PROBLEM

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

“Popular” books

Museum exhibits

Movies

21

'60s sitcom-themed household-goods
conglomerate ad/contests

People genuinely want to solve large instances.

Applications in:
Schoolbus routing
Moving farm equipment
Package delivery
Space interferometer scheduling
Circuit board drilling
Genome sequencing

Basic Approximation Algorithm:
The MST Heuristic

Given G with edge costs...

1. Compute an MST T for G, rooted at any seV.

2. Visit the vertices via DFS from s.

22

MST Heuristic example

Step 1: MST
Step 2: DFS

Valid tour? v
Poly-time? v
Cost?

2 X MST Cost

(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.

Key Claim: Optimal TSP cost = MST Cost always.
This implies the Theorem, since
MST Heuristic Cost = 2 x MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.
Take any spanning tree from within these edges.
Its cost is at least the MST Cost.

Therefore the original TSP tour’s cost is = MST Cost. .

Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time,
factor 1.5-approximation
algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:
« MST Heuristic
» Eulerian Tours
» Cheapest Perfect Matching algorithm

23

Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): L
For Euclidean-TSP, there is a
polynomial-time factor 1.3
approximation algorithm.

Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.1
approximation algorithm.

Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.01
approximation algorithm.

24

Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): L
For Euclidean-TSP, there is a
polynomial-time factor 1.001
approximation algorithm.

Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.0001
approximation algorithm.

Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1+¢
approximation algorithm, for any € > 0.

(Running time is like O(n (log n)'/¢).)

25

Euclidean-TSP:
NP-hard, but not that hard

is feasible

Can we do better?

. A 2-approximation algorithm for Vertex-Cover.

2. A63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

3. A (1+¢)-approximation alg. for Euclidean-TSP.

Can we do better?

2. A 63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

We cannot do better. (Unless P=NP.)

Theorem: For any B > 1-1/e, it is NP-hard
to factor B-approximate k-Coverage.

Proved in 1998 by Feige,
building on many prior works.
Proof length of reduction: = 100 pages.

26

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

We have no idea if we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.):
For any B >10v5—21 ~1.36,
it is NP-hard to B-approximate Vertex-Cover.

Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur-Safra) Poly-time (Gavril)

' P T

1 1.36 P

Between 1.36 and 2: totally unknown.
Raging controversy.

Study Guide Definitions:

Approximation algorithm.

The idea of “greedy”
algorithms.

Algorithms and analysis:

Gavril algorithm for
Vertex-Cover.

MST Heuristic for TSP.

27

