15-251: Great Theoretical Ideas in Computer Science Fall 2018, Lecture 17

Approximation Algorithms

SAT

given a Boolean formula F, is it satisfiable?

3SAT

same, but F is a 3-CNF

Vertex-Cover

given G and k, are there k vertices which touch all edges?

Clique

are there k vertices all connected?

Max-Cut

is there a vertex 2-coloring with at least k "cut" edges?

Hamiltonian-Cycle is there a cycle touching each vertex exactly once?

SAT ... is **NP-complete**

3SAT ... is **NP-complete**

Vertex-Cover ... is NP-complete

Clique ... is NP-complete

Max-Cut ... is **NP-complete**

Hamiltonian- ... is **NP-complete**Cycle

NP defined to be a class of decision problems.

Usually there is a natural 'optimization' version.

3SAT

Given a 3-CNF formula, is it satisfiable?

Vertex-Cover

Given G and k, are there k vertices which touch all edges?

Clique

Given G and k, are there k vertices which are all mutually connected?

Max-Cut

Is there a vertex 2-coloring with at least k "cut" edges?

Hamiltonian-Cycle Is there a cycle touching each
vertex exactly once?

NP defined to be a class of decision problems.

Usually there is a natural 'optimization' version.

3SAT

Vertex-Cover

Given G, find the size of the smallest $S \subseteq V$ touching all edges.

Clique

Given G, find the size of the largest clique (set of mutually connected vertices).

Max-Cut

Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

Hamiltonian-Cycle

NP defined to be a class of decision problems.

Usually there is a natural 'optimization' version.

3SAT

Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.

Vertex-Cover

Given G, find the size of the smallest $S \subseteq V$ touching all edges.

Clique

Given G, find the size of the largest clique (set of mutually connected vertices).

Max-Cut

Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

Hamiltonian-Cycle

NP defined to be a class of decision problems.

Usually there is a natural 'optimization' version.

3SAT

Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.

Vertex-Cover

Given G, find the size of the smallest $S \subseteq V$ touching all edges.

Clique

Given G, find the size of the largest clique (set of mutually connected vertices).

Max-Cut

Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

TSP

Given G with edge costs, find the cost of the cheapest cycle touching each vertex once.

NP defined to be a class of **decision problems**.

Usually there is a natural 'optimization' version and a natural 'search' version.

3SAT

Given a 3-CNF formula, find a truth assignment with the largest number of satisfied clauses.

Vertex-Cover

Given G, find the smallest $S \subseteq V$ touching all edges.

Clique

Given G, find the largest clique (set of mutually connected vertices).

Max-Cut

Given G, find the vertex 2-coloring which 'cuts' the largest number of edges.

TSP

Given G with edge costs, find the cheapest cycle touching each vertex once.

NP defined to be a class of **decision problems**.

Usually there is a natural 'optimization' version and a natural 'search' version.

Technically, the 'optimization' or 'search' versions cannot be in NP, since they're not languages.

We often still say they are NP-hard.

This means: if you could solve them in poly-time, then you could solve any NP problem in poly-time.

More interestingly the opposite is usually true too:

Given an efficient solution to the decision problem we can solve the 'optimization' and 'search' versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via binary search.

Find a solution (e.g., satisfying assignment) by setting variables one by one an, testing each time if there is still a good assignment.

SAT ... is **NP-complete**

3SAT ... is **NP-complete**

Vertex-Cover ... is NP-complete

Clique ... is NP-complete

Max-Cut ... is **NP-complete**

Hamiltonian- ... is **NP-complete**Cycle

INVENTS BEAUTIFUL THEORY OF ALGORITHMIC COMPLEXITY

EVERYTHING IS NP-COMPLETE

There is only one idea in this lecture:

Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

(S ⊆ V is a "vertex-cover" if it touches all edges.)

G has a vertex-cover of size 3.

Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

G has no vertex-cover of size 2.

(Because you need ≥ 1 vertex per yellow edge.)

Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Subexponential-time algorithms:

Brute-force tries all 2ⁿ subsets of n vertices.

Maybe there's an $O(1.5^{\rm n})$ -time algorithm.

Or $O(1.1^n)$ time, or $O(2^{n.1})$ time, or...

Could be quite okay if n = 100, say.

As of 2010: there is an $O(1.28^{n})$ -time algorithm.

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Special cases:

Solvable in poly-time for... **tree** graphs,

bipartite graphs,

"series-parallel" graphs...

Perhaps for "graphs encountered in practice"?

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Approximation algorithms:

Try to find pretty small vertex-covers.

Still want polynomial time, and for **all** graphs.

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum size vertex-cover.

Gavril's Approximation Algorithm

Easy Theorem (from 1976):

There is a **polynomial-time** algorithm that, given **any** graph G = (V,E), outputs a vertex-cover $S \subseteq V$ such that

$$|S| \leq 2|S^*|$$

where S* is the **smallest** vertex-cover.

"A factor 2-approximation for Vertex-Cover."

Let's recall a similar situation from Lecture 10: My favorite problem, Max-Cut.

Input: A graph G=(V,E).

Output: A "2-coloring" of V:

each vertex designated yellow or blue.

Goal: Have as many **cut** edges as possible.

An edge is cut if its endpoints have

different colors.

Input: A graph G=(V,E).

Output: A "2-coloring" of V:

each vertex designated yellow or blue.

Goal: Have as many **cut** edges as possible.

An edge is cut if its endpoints have

different colors.

On one hand:
Finding the MAX-Cut is NP-hard.

On the other hand: Polynomial-time "Local Search" algorithm guarantees cutting $\geq \frac{1}{2}|E|$ edges.

In particular:

(# cut by Local Search) $\geq \frac{1}{2}$ (max # cuttable)

"A factor ½-approximation for Max-Cut."

By the way:

Goemans and Williamson (1994) gave a polynomial-time

0.87856-approximation

for Max-Cut.

It is very beautiful, but pretty difficult!

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There's no poly-time algorithm to find the optimal solution unless P = NP.)

But from the point of view of finding approximately optimal solutions, there is an intricate, fascinating, and wide range of possibilities...

Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

- 2. A pretty good approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

- 2. A pretty good approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

Given graph G = (V,E) try to find the smallest "vertex-cover" for G.

(S ⊆ V is a "vertex-cover" if it touches all edges.)

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)

 $S \leftarrow \emptyset$

while **not** all edges marked as "covered"

find v∈V touching most unmarked edges

 $S \leftarrow S \cup \{v\}$

mark all edges v touches

(Break ties arbitrarily.)

Done. Vertex-cover size 3 (optimal) ©.

GreedyVC analysis

Correctness:

✓ Always outputs a valid vertex-cover.

Running time:

✓ Polynomial time.

Solution quality:

This is the interesting question.

There must be some graph G where it doesn't find the **smallest** vertex-cover.

Because otherwise... P = NP!

A bad graph for GreedyVC

Smallest?

A bad graph for GreedyVC

Smallest?

GreedyVC? 4

So GreedyVC is **not** a 1.33-approximation. (Because 1.33 < 4/3.)

A worse graph for GreedyVC

Smallest?

???

GreedyVC?

21

So GreedyVC is **not**a 1.74-approximation.
(Because 1.74 < 21/12.)

Even worse graph for GreedyVC

Well... it's a good homework problem.

We know GreedyVC is **not** a 1.74-approximation.

Fact: GreedyVC is **not** a 2.08-approximation.

Fact: GreedyVC is **not** a 3.14-approximation.

Fact: GreedyVC is **not** a 42-approximation.

Fact: GreedyVC is **not** a 999-approximation.

Greed is Bad (for Vertex-Cover)

Theorem: $\forall C$, GreedyVC is **not** a C-approximation.

In other words:

For any constant C, there is a graph G such that

 $|GreedyVC(G)| > C \cdot |Min-Vertex-Cover(G)|$.

Gavril to the rescue

GavrilVC(G)

 $S \leftarrow \emptyset$

while **not** all edges marked as "covered"

let {v,w} be any unmarked edge

 $S \leftarrow S \cup \{v,w\}$?

mark all edges v,w touch

GavrilVC example

GavrilVC example

GavrilVC example

Smallest: 3

GavrilVC: 6

So GavrilVC is **at best** a 2-approximation.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T.

Say it picked edges e₁, e₂, ..., e_T ∈ E.

Key claim: $\{e_1, e_2, ..., e_T\}$ is a matching.

Because... when e_i is picked, it's unmarked,

so its endpoints are not among $e_1, ..., e_{j-1}$.

So **any** vertex-cover must have ≥ 1 vertex from each e_i .

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T.

Say it picked edges e_1 , e_2 , ..., $e_T \in E$.

Key claim: $\{e_1, e_2, ..., e_T\}$ is a <u>matching</u>.

Because... when e is picked, it's unmarked,

so its endpoints are not among $e_1, ..., e_{j-1}$.

So **any** vertex-cover must have ≥ 1 vertex from each e_j .

Including the **minimum** vertex-cover S*, whatever it is.

Thus $|S^*| \ge T$.

So for Gavril's final vertex-cover S,

$$|S| = 2T \le 2|S^*|$$
.

Today: A case study of approximation algorithms

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A pretty good approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A pretty good approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

"k-Coverage" problem

"Pokémon-Coverage" problem

Let's say you have some Pokémon,

and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the # of distinct Pokémon.

"Pokémon-Coverage" problem

This problem is NP-hard. 😊

Approximation algorithm?

We could try to be greedy again...

GreedyCoverage()

for i = 1...k

add to the team the trainer bringing in the most new Pokémon, given the team so far

Example with k=3:

Optimum: 27 So Greedy is **at best**

GreedyCoverage: 21 a 77.7%-approximation.

Greed is Pretty Good (for k-Coverage)

Theorem:

GreedyCoverage is a 63%-approximation for k-Coverage.

More precisely, 1-1/e

where $e \approx 2.718281828...$

Proof: (Don't read if you don't want to.)

Let P* be the Pokémon covered by the best k trainers. Define $r_i = |P^*| - \#$ Pokémon covered after i steps of Greedy. We'll prove by induction that $r_i \leq (1-1/k)^i \cdot |P^*|$. The base case i=0 is clear, as $r_0 = |P^*|$. For the inductive step, suppose Greedy enters its ith step. At this point, the number of uncovered Pokémon in P^* must be $\geq r_{i-1}$. We know there are some k trainers covering all these Pokémon. Thus one of these trainers must cover at least r_{i-1}/k of them. Therefore the trainer chosen in Greedy's ith step will cover $\geq r_{i-1}/k$ Pokémon. Thus $r_i \le r_{i-1} - r_{i-1}/k = (1-1/k) \cdot r_{i-1} \le (1-1/k) \cdot (1-1/k)^i \cdot |P^*|$ by induction. Thus we have completed the inductive proof that $r_i \leq (1-1/k)^i \cdot |P^*|$. Therefore the Greedy algorithm terminates with $r_k \leq (1-1/k)^k \cdot |P^*|$. Since $1-1/k \le e^{-1/k}$ (Taylor expansion), we get $r_k \le e^{-1} \cdot |P^*|$. Thus Greedy covers at least $|P^*| - e^{-1} \cdot |P^*| = (1-1/e) \cdot |P^*|$ Pokémon. This completes the proof that Greedy is a (1-1/e)-approximation algorithm.

Today: A case study of approximation algorithms

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
- 3. Some very good approximation algorithms for TSP.

TSP

(Traveling Salesperson Problem)

Many variants. Most common is "Metric-TSP":

Input: A graph G=(V,E) with edge costs.

Output: A "tour": i.e., a walk that visits each

vertex at least once, and starts and

ends at the same vertex.

Goal: Minimize total cost of tour.

TSP example

Cheapest tour:

TSP is probably the most famous NP-complete problem.

It has inspired many things...

Textbooks

he RAVELING ALESMAN ROBLEM John Control Control Control Control Control

The Traveling Salesman Problem

A Computational Study

Princeton Series in APPLIED MATHEMATICS

David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook Gerhard Reinelt

The Traveling
Salesman
Computational Solutions for TSP Applications

COMBINATORIAL OFTIMIZATION

The Traveling Salesman Problem and Its Variations

Gregory Gittin and Abraham P. Punters (Box)

"Popular" books

Museum exhibits

Movies

TRAVELLING SALESMAN

A CEREBRAL THRILLER. COMING SOON TRAVELLINGSALESMANMOVIE.COM @TRAVSALEMOVIE

'60s sitcom-themed household-goods conglomerate ad/contests

People genuinely want to solve large instances.

Applications in:

- Schoolbus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing
- •

Basic Approximation Algorithm: The MST Heuristic

Given G with edge costs...

- 1. Compute an **MST** T for G, rooted at any s∈ V.
- 2. Visit the vertices via **DFS** from s.

MST Heuristic example

Step 1: MST

Step 2: DFS

Valid tour? ✓

Poly-time? ✓

Cost?

2 × MST Cost

(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.

Key Claim: Optimal TSP cost ≥ MST Cost always.

This implies the Theorem, since

MST Heuristic Cost = $2 \times MST$ Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.

Take any spanning tree from within these edges.

Its cost is at least the MST Cost.

Therefore the original TSP tour's cost is ≥ MST Cost.

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor 1.5-approximation algorithm for (Metric) TSP.

Proof is not **too** hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.3
approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.1
approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.01
approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.001
approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.0001 approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1+ε approximation algorithm, for any $\varepsilon > 0$.

(Running time is like $O(n (log n)^{1/\epsilon})$.)

Euclidean-TSP: NP-hard, but not **that** hard

n > 10,000 is feasible

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
- 3. A $(1+\epsilon)$ -approximation alg. for Euclidean-TSP.

2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".

We cannot do better. (Unless P=NP.)

Theorem: For **any** $\beta > 1-1/e$, it is NP-hard to factor β -approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works. Proof length of reduction: ≈ 100 pages.

1. A 2-approximation algorithm for Vertex-Cover.

We have no idea if we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.): For any $\beta > 10\sqrt{5} - 21 \approx 1.36$, it is NP-hard to β-approximate Vertex-Cover.

Approximating Vertex-Cover

Approximation Factor

Between 1.36 and 2: totally unknown.

Raging controversy.

Study Guide

Approximation algorithm.

The idea of "greedy" algorithms.

Algorithms and analysis:

Gavril algorithm for Vertex-Cover.

MST Heuristic for TSP.