Approximation Algorithms
<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT</td>
<td>Given a Boolean formula F, is it satisfiable?</td>
</tr>
<tr>
<td>3SAT</td>
<td>Same, but F is a 3-CNF</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G and k, are there k vertices which touch all edges?</td>
</tr>
<tr>
<td>Clique</td>
<td>Are there k vertices all connected?</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Is there a vertex 2-coloring with at least k “cut” edges?</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td>Is there a cycle touching each vertex exactly once?</td>
</tr>
</tbody>
</table>
SAT ... is NP-complete
3SAT ... is NP-complete
Vertex-Cover ... is NP-complete
Clique ... is NP-complete
Max-Cut ... is NP-complete
Hamiltonian-Cycle ... is NP-complete
Decision vs. Optimization/Search

NP defined to be a class of **decision problems**. Usually there is a natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>Given a 3-CNF formula, is it satisfiable?</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G and k, are there k vertices which touch all edges?</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G and k, are there k vertices which are all mutually connected?</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Is there a vertex 2-coloring with at least k “cut” edges?</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td>Is there a cycle touching each vertex exactly once?</td>
</tr>
</tbody>
</table>
Decision vs. Optimization/Search

NP defined to be a class of **decision problems**.

Usually there is a natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td></td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the size of the smallest (S \subseteq V) touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the size of the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the largest number of edges ‘cut’ by some vertex 2-coloring.</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td></td>
</tr>
</tbody>
</table>
Decision vs. Optimization/Search

NP defined to be a class of **decision problems**.

Usually there is a natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the size of the smallest $S \subseteq V$ touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the size of the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the largest number of edges ‘cut’ by some vertex 2-coloring.</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td></td>
</tr>
</tbody>
</table>
Decision vs. Optimization/Search

NP defined to be a class of *decision problems.*

Usually there is a natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the size of the smallest $S \subseteq V$ touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the size of the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the largest number of edges ‘cut’ by some vertex 2-coloring.</td>
</tr>
<tr>
<td>TSP</td>
<td>Given G with edge costs, find the cost of the cheapest cycle touching each vertex once.</td>
</tr>
</tbody>
</table>
Decision vs. Optimization/Search

NP defined to be a class of **decision problems**.

Usually there is a natural ‘optimization’ version and a natural ‘search’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>Given a 3-CNF formula, find a truth assignment with the largest number of satisfied clauses.</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the smallest $S \subseteq V$ touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the vertex 2-coloring which ‘cuts’ the largest number of edges.</td>
</tr>
<tr>
<td>TSP</td>
<td>Given G with edge costs, find the cheapest cycle touching each vertex once.</td>
</tr>
</tbody>
</table>
Decision vs. Optimization/Search

NP defined to be a class of **decision problems**.

Usually there is a natural ‘optimization’ version and a natural ‘search’ version.

Technically, the ‘optimization’ or ‘search’ versions cannot be in **NP**, since they’re not languages.

We often still say they are **NP-hard**.

This means: if you could solve them in poly-time, then you could solve any NP problem in poly-time.

Why???
Decision vs. Optimization/Search

More interestingly the opposite is usually true too: Given an efficient solution to the decision problem we can solve the ‘optimization’ and ‘search’ versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via binary search.

Find a solution (e.g., satisfying assignment) by setting variables one by one and, testing each time if there is still a good assignment.
<table>
<thead>
<tr>
<th>Problem</th>
<th>... is NP-complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT</td>
<td></td>
</tr>
<tr>
<td>3SAT</td>
<td></td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td></td>
</tr>
<tr>
<td>Clique</td>
<td></td>
</tr>
<tr>
<td>Max-Cut</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td></td>
</tr>
</tbody>
</table>
INVENTS BEAUTIFUL THEORY
OF ALGORITHMIC COMPLEXITY

EVERYTHING IS NP-COMPLETE
There is only one idea in this lecture:

NEVER GIVE UP!
Vertex-Cover

Given graph $G = (V,E)$ and number k, is there a size-k “vertex-cover” for G?

($S \subseteq V$ is a “vertex-cover” if it touches all edges.)

G has a vertex-cover of size 3.
Vertex-Cover

Given graph $G = (V,E)$ and number k, is there a size-k “vertex-cover” for G?

($S \subseteq V$ is a “vertex-cover” if it touches all edges.)

G has no vertex-cover of size 2.

(Because you need ≥ 1 vertex per yellow edge.)
Vertex-Cover

Given graph $G = (V,E)$ and number k, is there a size-k “vertex-cover” for G?

($S \subseteq V$ is a “vertex-cover” if it touches all edges.)

The Vertex-Cover problem is NP-complete. 😞

✦ assuming “$P \neq NP$”, there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.
Never Give Up

Subexponential-time algorithms:
Brute-force tries all 2^n subsets of n vertices.
Maybe there’s an $O(1.5^n)$-time algorithm.
Or $O(1.1^n)$ time, or $O(2^{n-1})$ time, or...
Could be quite okay if $n = 100$, say.

As of 2010: there is an $O(1.28^n)$-time algorithm.

assuming “P \neq NP”, there is no algorithm running in polynomial time
which, for all graphs G, finds the minimum-size vertex-cover.
Never Give Up

Special cases:

Solvable in poly-time for...

tree graphs,

bipartite graphs,

“**series-parallel**” graphs...

Perhaps for “graphs encountered in practice”?

→ assuming “P ≠ NP”, there is no algorithm running in **polynomial time** which, for all graphs \(G \), finds the **minimum**-size vertex-cover.
Approximation algorithms:

Try to find pretty small vertex-covers.

Still want polynomial time, and for all graphs.

assuming “P ≠ NP”, there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.
Gavril’s Approximation Algorithm

Easy Theorem (from 1976):

There is a **polynomial-time** algorithm that, given any graph \(G = (V,E) \), outputs a vertex-cover \(S \subseteq V \) such that

\[
|S| \leq 2|S^*|,
\]

where \(S^* \) is the **smallest** vertex-cover.

“A factor 2-approximation for Vertex-Cover.”
Let’s recall a similar situation from Lecture 10:

My favorite problem, Max-Cut.
Max-Cut

Input: A graph $G=(V,E)$.

Output: A "2-coloring" of V: each vertex designated yellow or blue.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.
Max-Cut

Input: A graph \(G = (V, E) \).

Output: A “2-coloring” of \(V \): each vertex designated yellow or blue.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.
Max-Cut

On one hand:
Finding the **MAX**-Cut is **NP-hard**.

On the other hand:
Polynomial-time “Local Search” algorithm guarantees cutting \(\geq \frac{1}{2}|E| \) edges.

In particular:
\((# \text{ cut by Local Search}) \geq \frac{1}{2} (\text{max # cuttable})\)

“A factor \(\frac{1}{2}\)-approximation for Max-Cut.”
Max-Cut

By the way:

Goemans and Williamson (1994) gave a polynomial-time

0.87856-approximation

for Max-Cut.

It is very beautiful, but pretty difficult!
Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find the optimal solution unless P = NP.)

But from the point of view of finding approximately optimal solutions, there is an intricate, fascinating, and wide range of possibilities...
Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Vertex-Cover

Given graph $G = (V, E)$ try to find the smallest “vertex-cover” for G.

($S \subseteq V$ is a “vertex-cover” if it touches all edges.)
A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

\[
\text{GreedyVC}(G)\\
S \leftarrow \emptyset \\
\text{while not all edges marked as “covered”} \\
\text{find } v \in V \text{ touching most unmarked edges} \\
S \leftarrow S \cup \{v\} \\
\text{mark all edges } v \text{ touches}
\]
GreedyVC example
GreedyVC example

(Break ties arbitrarily.)
GreedyVC example
GreedyVC example

Done. Vertex-cover size 3 (optimal) 😊.
GreedyVC analysis

Correctness:
✓ Always outputs a valid vertex-cover.

Running time:
✓ Polynomial time.

Solution quality:
This is the interesting question. There must be some graph \(G \) where it doesn’t find the smallest vertex-cover. Because otherwise... \(P = NP! \)
A bad graph for GreedyVC

Smallest? 3
A bad graph for GreedyVC

Smallest? 3
GreedyVC? 4

So GreedyVC is not a 1.33-approximation. (Because 1.33 < 4/3.)
A worse graph for GreedyVC

Smallest? ???
GreedyVC? 21

So GreedyVC is **not** a 1.74-approximation.
(Because 1.74 < 21/12.)
Even worse graph for GreedyVC

Well... it’s a good homework problem.

We know GreedyVC is **not** a 1.74-approximation.

Fact: GreedyVC is **not** a 2.08-approximation.

Fact: GreedyVC is **not** a 3.14-approximation.

Fact: GreedyVC is **not** a 42-approximation.

Fact: GreedyVC is **not** a 999-approximation.
Greed is Bad (for Vertex-Cover)

Theorem: $\forall C$, GreedyVC is **not** a C-approximation.

In other words:

For any constant C,
there is a graph G such that

$$|\text{GreedyVC}(G)| > C \cdot |\text{Min-Vertex-Cover}(G)|.$$
GavrilVC(G)

S ← ∅

while not all edges marked as “covered”

let \{v,w\} be any unmarked edge

S ← S ∪ \{v,w\}

mark all edges v,w touch
GavriliVC example
GavrilVC example
GavrilVC example

Smallest: 3
GavrilVC: 6

So GavrilVC is at best a 2-approximation.
Theorem:
GavrilVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavrilVC(G) does T iterations. So its $|S| = 2T$.
Say it picked edges $e_1, e_2, ..., e_T \in E$.
Key claim: $\{e_1, e_2, ..., e_T\}$ is a matching.
Because... when e_j is picked, it’s unmarked, so its endpoints are not among $e_1, ..., e_{j-1}$.
So any vertex-cover must have ≥ 1 vertex from each e_j.
Theorem:
GavriliVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavriliVC(G) does T iterations. So its $|S| = 2T$.
Say it picked edges $e_1, e_2, \ldots, e_T \in E$.

Key claim: $\{e_1, e_2, \ldots, e_T\}$ is a matching.
Because... when e_j is picked, it’s unmarked, so its endpoints are not among e_1, \ldots, e_{j-1}.

So any vertex-cover must have ≥ 1 vertex from each e_j. Including the **minimum** vertex-cover S^*, whatever it is.

Thus $|S^*| \geq T$.

So for Gavril’s final vertex-cover S,

$$|S| = 2T \leq 2|S^*|.$$
Today: A case study of approximation algorithms

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Today: A case study of approximation algorithms

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
“k-Coverage” problem
“Pokémon-Coverage” problem

Let’s say you have some Pokémon, and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the # of distinct Pokémon.
“Pokémon-Coverage” problem

This problem is **NP-hard**. 😞

Approximation algorithm?

We could try to be greedy again...

GreedyCoverage()

for i = 1...k

add to the team the trainer bringing in the most new Pokémon, given the team so far
Example with $k=3$:

Optimum: 27

Greedy Coverage: 21

So Greedy is at best a 77.7%-approximation.
Greed is Pretty Good (for k-Coverage)

Theorem:

GreedyCoverage is a 63%-approximation for k-Coverage.

More precisely, $1 - 1/e$

where $e \approx 2.718281828\ldots$
Proof: (Don’t read if you don’t want to.)

Let P^* be the Pokémon covered by the best k trainers. Define $r_i = |P^*| - \# \text{ Pokémon covered after } i \text{ steps of Greedy}$. We’ll prove by induction that $r_i \leq (1 - 1/k)^i \cdot |P^*|$. The base case $i=0$ is clear, as $r_0 = |P^*|$. For the inductive step, suppose Greedy enters its ith step. At this point, the number of uncovered Pokémon in P^* must be $\geq r_{i-1}$. We know there are some k trainers covering all these Pokémon. Thus one of these trainers must cover at least r_{i-1}/k of them. Therefore the trainer chosen in Greedy’s ith step will cover $\geq r_{i-1}/k$ Pokémon. Thus $r_i \leq r_{i-1} - r_{i-1}/k = (1 - 1/k) \cdot r_{i-1} \leq (1 - 1/k) \cdot (1 - 1/k)^{i-1} \cdot |P^*|$ by induction. Thus we have completed the inductive proof that $r_i \leq (1 - 1/k)^i \cdot |P^*|$. Therefore the Greedy algorithm terminates with $r_k \leq (1 - 1/k)^k \cdot |P^*|$. Since $1 - 1/k \leq e^{-1/k}$ (Taylor expansion), we get $r_k \leq e^{-1} \cdot |P^*|$. Thus Greedy covers at least $|P^*| - e^{-1} \cdot |P^*| = (1 - 1/e) \cdot |P^*|$ Pokémon. This completes the proof that Greedy is a $(1 - 1/e)$-approximation algorithm.
Today: A case study of approximation algorithms

2. A 63% $(1-1/e)$ approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Today: A case study of approximation algorithms

2. A 63% \((1-1/e)\) approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
TSP
(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP”:

Input: A graph $G=(V,E)$ with edge costs.
Output: A “tour”: i.e., a walk that visits each vertex at least once, and starts and ends at the same vertex.
Goal: Minimize total cost of tour.
TSP example

Cheapest tour:

\[3 + 5 + 5 + 16 + 26 + 4 + 12 + 2 + 2 = 71 \]
TSP is probably the most famous NP-complete problem.

It has inspired many things...
Textbooks

- The Traveling Salesman Problem
 A Computational Study
 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook

- The Traveling Salesman: Computational Solutions for TSP Applications

- Combinatorial Optimization
 The Traveling Salesman Problem and Its Variations
“Popular” books
Museum exhibits
Movies

TRAVELLING SALESMAN
A CEREBRAL THRILLER. COMING SOON
TRAVELLINGSALESMANMOVIE.COM @TRAVSALEM
’60s sitcom-themed household-goods conglomerate ad/contests
People genuinely want to solve large instances.

Applications in:
- Schoolbus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing
- ...

Basic Approximation Algorithm: The MST Heuristic

Given G with edge costs...
1. Compute an MST T for G, rooted at any $s \in V$.
2. Visit the vertices via DFS from s.
MST Heuristic example

Step 1: MST
Step 2: DFS

Valid tour? ✓
Poly-time? ✓
Cost?

2 \times \text{MST Cost}

(84 in this case)
MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.

Key Claim: Optimal TSP cost \geq MST Cost always.

This implies the Theorem, since

MST Heuristic Cost $= 2 \times$ MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.
They form a connected graph on all $|V|$ vertices.
Take any spanning tree from within these edges.
Its cost is at least the MST Cost.
Therefore the original TSP tour’s cost is \geq MST Cost.
Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor 1.5-approximation algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:
- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm
Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.3 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.1 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.01 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.001 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.0001 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor $1+\varepsilon$ approximation algorithm, for any $\varepsilon > 0$.

(Running time is like $O(n (\log n)^{1/\varepsilon})$.)
Euclidean-TSP:
NP-hard, but not *that* hard

\[n > 10,000 \] is feasible
Can we do better?

2. A 63% \((1-1/e)\) approximation algorithm for the “k-Coverage Problem”.

3. A \((1+\varepsilon)\)-approximation alg. for Euclidean-TSP.
Can we do better?

2. A 63% \((1-1/e)\) approximation algorithm for the “k-Coverage Problem”.

We cannot do better. (Unless P=NP.)

Theorem: For any \(\beta > 1-1/e\), it is NP-hard to factor \(\beta\)-approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works. Proof length of reduction: \(\approx 100\) pages.
Can we do better?

We have no idea if we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.):
For any $\beta > 10\sqrt{5} - 21 \approx 1.36$, it is NP-hard to β-approximate Vertex-Cover.
Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur–Safra) 1.36 2 Poly-time (Gavril)

Between 1.36 and 2: totally unknown. Raging controversy.
Study Guide

Definitions:

Approximation algorithm.

The idea of “greedy” algorithms.

Algorithms and analysis:

Gavril algorithm for Vertex-Cover.

MST Heuristic for TSP.