15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 17

Approximation Algorithms




SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

given a Boolean formula F,
IS It satisfiable?

same, but F is a 3-CNF

given G and k, are there k
vertices which touch all edges?

are there k vertices all connected?

Is there a vertex 2-coloring with
at least k “cut” edges?

Is there a cycle touching each
vertex exactly once?
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Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, is it satisfiable?

Given G and k, are there k
vertices which touch all edges?

Given G and k, are there k vertices
which are all mutually connected?

Is there a vertex 2-coloring with
at least k “cut” edges?

Is there a cycle touching each
vertex exactly once?




Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given G, find the size of the smallest S € V
touching all edges.

Given G, find the size of the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.




Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, find the largest number
of clauses satisfiable by a truth assignment.

Given G, find the size of the smallest S € V
touching all edges.

Given G, find the size of the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.




Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find the largest number
of clauses satisfiable by a truth assignment.

Given G, find the size of the smallest S € V
touching all edges.

Given G, find the size of the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

Given G with edge costs, find the cost of the
cheapest cycle touching each vertex once.




Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version
and a natural ‘search’ version.

Given a 3-CNF formula, find a truth assignment

3SAT with the largest number of satisfied clauses.

VIR e CaEl Given.G, find the smallest S € V
touching all edges.
: Given G, find the largest clique
Clique :
(set of mutually connected vertices).
Max-Cut Given G, find the vertex 2-coloring which ‘cuts’
the largest number of edges.

TSP Given G with edge costs, find the cheapest
cycle touching each vertex once.




Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version
and a natural ‘search’ version.

Technically, the ‘optimization’ or ‘search’ versions
cannot be in NP, since they’re not languages.

We often still say they are NP-hard.

This means: if you could solve them in poly-time,
then you could solve any NP problem in poly-time.

Why?7??




Decision vs. Optimization/Search

ore interestingly the opposite is usually true too:

Given an efficient solution to the decision problem
we can solve the ‘optimization’ and ‘search’
versions efficiently, too.

Find the number (e.q., of satisfiable clauses) via

binary search.

Find a solution (e.q., satisfying assignment) by

setting variables one by one an, testing each
time if there is still a good assignment.




SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

.. IS NP-complete

.. IS NP-complete

.. IS NP-complete

.. IS NP-complete

.. IS NP-complete

.. IS NP-complete




INVENTS BEAUTIFUL THEORY
OF ALGORITHMIC COMPLEXITY

v,

EVERYTHING IS NP-COMPLETE




There is only one idea in this lecture:




Vertex-Cover

Given graph G = (V,E) and number Kk,
IS there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)

G has a vertex-cover of size 3.




Vertex-Cover

Given graph G = (V,E) and number Kk,
IS there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)

G has no vertex-cover of size 2.
(Because you need = 1 vertex per yellow edge.)




Vertex-Cover

Given graph G = (V,E) and number Kk,
IS there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)

The Vertex-Cover problem is NP-complete. ®

=» assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.




Never Give Up

Subexponential-time algorithms:
Brute-force tries all 2" subsets of n vertices.
Maybe there’s an O(1.5")-time algorithm.

Or O(1.1M) time, or O(2"") time, or...
Could be quite okay if n = 100, say.

As of 2010: there is an O(1.28")-time algorithm.

= assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimume-size vertex-cover.




Never Give Up

Special cases:
Solvable in poly-time for...
tree graphs,
bipartite graphs,
“series-parallel” graphs...

Perhaps for “graphs encountered in practice”?

=» assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimume-size vertex-cover.




Never Give Up

Approximation algorithms:
Try to find pretty small vertex-covers.

Still want polynomial time, and for all graphs.

= assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum size vertex-cover.




Gavril’s Approximation Algorithm

Easy Theorem (from 1976):

There is a polynomial-time algorithm that,

given any graph G = (V,E),
outputs a vertex-cover S € V such that

S| = 2|S7|

where S is the smallest vertex-cover.

“A factor 2-approximation for Vertex-Cover.”




Let’s recall a similar situation from Lecture 10:

My favorite problem, Max-Cut.




Max-Cut

Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

Goal: Have as many cut edges as possible.
An edge is cut If its endpoints have
different colors.




Max-Cut

Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

Goal: Have as many cut edges as possible.
An edge is cut if its endpoints have
different colors.




Max-Cut

On one hand:
Finding the MAX-Cut is NP-hard.

On the other hand:
Polynomial-time “Local Search” algorithm

guarantees cutting > Y2|E| edges.

In particular:
(# cut by Local Search) = Y2 (max # cuttable)

“A factor Y2-approximation for Max-Cut.”




By the way:

Goemans and Williamson (1994) 1
gave a polynomial-time N

0.87856-approximation
for Max-Cut.

It Is very beautiful, but pretty difficult!




Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find
the optimal solution unless P = NP.)

But from the point of view of finding
approximately optimal solutions,
there is an intricate, fascinating, and wide
range of possibilities...




Today: A case study of
approximation algorithms

1. A somewhat good approximation algorithm
for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.




Today: A case study of
approximation algorithms

1. A somewhat good approximation algorithm
for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.




Vertex-Cover

Given graph G = (V,E) try to find the
smallest “vertex-cover” for G.

(S € Vis a “vertex-cover” if it touches all edges.)




A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)
S« @
while not all edges marked as “covered”
find veV touching most unmarked edges
S«<Svu{v}
mark all edges v touches




GreedyVC example




GreedyVC example

(Break ties arbitrarily.)




GreedyVC example




GreedyVC example

Done. Vertex-cover size 3 (optimal) ©.




GreedyVC analysis

Correctness:
v Always outputs a valid vertex-cover.

Running time:
v Polynomial time.

Solution quality:
This is the interesting question.
There must be some graph G where it
doesn’t find the smallest vertex-cover.
Because otherwise... P = NP!




A bad graph for GreedyVC

Smallest?




A bad graph for GreedyVC

Smallest? So GreedyVC is not
a 1.33-approximation.

?
GreedyVC? 4 (Because 1.33 < 4/3.)




A worse graph for GreedyVC

Smallest? 2?7 So GreedyVC is not
a 1.74-approximation.

?
GreedyVC: (Because 1.74 < 21/12.)




Even worse graph for GreedyVC

Well... it's a good homework problem.
We know GreedyVC is not a 1.74-approximation.

Fact: GreedyVC is not a 2.08-approximation.
Fact: GreedyVC is not a 3.14-approximation.
Fact: GreedyVC is not a 42-approximation.

Fact: GreedyVC is not a 999-approximation.




Greed iIs Bad (for Vertex-Cover)

Theorem: VC, GreedyVC is not a C-approximation.

In other words:
For any constant C,
there is a graph G such that

|GreedyVC(G)| > C - [Min-Vertex-Cover(G)]|.




Gavril to the rescue

GavrilVC(G)
S« @
while not all edges marked as “covered”
let {v,w} be any unmarked edge
S«<Svu{vw}?
mark all edges v,w touch




GavrilVC example




GavrilVC example




GavrilVC example

Smallest: So GavrilVC is at best

GavrilvVC: a 2-approximation.




Theorem:
GavrilVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavrilVC(G) does T iterations. So its S| = 2T.
Say it picked edges e,, e, ..., et € E. N
Key claim: {eq, e,, ..., er} Is a matching.
Because... when e is picked, it's unmarked,

so its endpoints are not among ey, ..., €j_1.
S0 any vertex-cover must have = 1 vertex from each e;.




Theorem:
GavrilVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavrilVC(G) does T iterations. So its |S| = 2T.
Say it picked edges e, e,, ..., e € E. N
Key claim: {eq, e,, ..., er} Is a matching.
Because... when e is picked, it's unmarked,

so its endpoints are not among ey, ..., €;_;.
S0 any vertex-cover must have = 1 vertex from each e;.
Including the minimum vertex-cover S*, whatever it is.
Thus |ST| = T.
So for Gavril’'s final vertex-cover S,

S| = 2T < 2|S'|. B




Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.




Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.




“k-Coverage” problem




“Pokémon-Coverage” problem
\ yioe h
Let’s say you have - 4 %?‘j?
4
some Pokémon, /LA i“
[ N\

and some trainers,

each having a
subset of Pokémon.

Given k, choose a

team of k trainers

to maximize the #
of distinct Pokémon.




“Pokemon-Coverage” problem

This problem is NP-hard. ®
Approximation algorithm?

We could try to be greedy again...

GreedyCoverage()
fori=1...k
add to the team the trainer bringing in the
most new Pokémon, given the team so far




Example with k=3:

30 Pokémon
CRICINES

Optimum: 27 So Greedy is at best
GreedyCoverage: 21 a 77.7%-approximation.




Greed Is Pretty Good (for k-Coverage)

Theorem:
GreedyCoverage is a 63%-approximation
[ for k-Coverage.

More precisely, 1—-1/e
where e = 2.718281828...




Proof: (Don’tread if you don’'t want to.)

Let P* be the Pokémon covered by the best k trainers.

Define r; = |P*| — # Pokémon covered after i steps of Greedy.

We’'ll prove by induction that r, < (1-1/k)' - |P*|.

The base case i=0 is clear, as r, = |P*|.

For the inductive step, suppose Greedy enters its ith step.

At this point, the number of uncovered Pokémon in P* must be > r,_;.
We know there are some k trainers covering all these Pokémon.
Thus one of these trainers must cover at least r,_;/k of them.
Therefore the trainer chosen in Greedy'’s ith step will cover = r,_;/k Pokémon.
Thusr,<r_; —r_;/k=(1-1/k)'r_; < (1-1/k)-(1—-1/k)"-|P*| by induction.
Thus we have completed the inductive proof that r, < (1-1/k)' - |P*|.
Therefore the Greedy algorithm terminates with r, < (1-1/k)%-|P*|.

Since 1-1/k < e~lk (Taylor expansion), we get r, < e=1-|P*|.

Thus Greedy covers at least |P*| — e=1-|P*| = (1-1/e) - |P*| Pokémon.

This completes the proof that Greedy is a (1—1/e)-approximation algorithm.




Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. AB63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.




Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A63% (1-1/e) approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.




TSP
(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP”:

Input: A graph G=(V,E) with edge costs.

Output: A “tour”: i.e., a walk that visits each
vertex at least once, and starts and
ends at the same vertex.

Minimize total cost of tour.
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TSP Is probably the most
famous NP-complete problem.

It has inspired many things...
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Computational Solutions for TSP Applications

CONEBINATORIAL OFTINIZATION




“Popular” books




Museum exhibits




Movies
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TRAVELLING SALESMAN

A CEREBRAL THRILLER. COMING SOON
TRAVELLINGSALESMANMOVIE.COM TRAVSALEMOVIE




'00s sitcom-themed household-goods
conglomerate ad/contests




People genuinely want to solve large instances.

Applications in:
Schoolbus routing
Moving farm equipment
Package delivery
Space interferometer scheduling
Circuit board drilling
Genome sequencing




Basic Approximation Algorithm:
The MST Heuristic

Given G with edge costs...

1. Compute an MST T for G, rooted at any seV.
2. Visit the vertices via DFS from s.




MST Heuristic example

Step 1: MST
Step 2: DFS

Valid tour? v
Poly-time? v

Cost?

2 X MST Cost

(84 in this case)




MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.
Key Claim: Optimal TSP cost = MST Cost always.

This implies the Theorem, since
MST Heuristic Cost = 2 X MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.

Take any spanning tree from within these edges.

Its cost is at least the MST Cost.

Therefore the original TSP tour’s cost is = MST Cost. -




Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time,
factor 1.5-approximation
algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:
 MST Heuristic
« Eulerian Tours
 Cheapest Perfect Matching algorithm




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.3
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.1
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.01
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.001
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.0001
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1+c¢
approximation algorithm, for any € > 0.

(Running time is like O(n (log n)/¢).)




n> 10,000
IS feasible
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NP-hard, but not that hard




Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

2. AB63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

3. A (1+¢€)-approximation alg. for Euclidean-TSP.




Can we do better?

2. A63% (1—1/e) approximation algorithm
for the “k-Coverage Problem”.

We cannot do better. (Unless P=NP.)

Theorem: Forany 3 > 1-1/e, it is NP-hard
to factor 3-approximate k-Coverage.

Proved in 1998 by Feige,
building on many prior works.
Proof length of reduction: = 100 pages.




Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

We have no idea If we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.):

For any B >10v/5—21~1.36,
it Is NP-hard to (-approximate Vertex-Cover.




Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur-Safra) Poly-time (Gauvril)

| [ 2727 — |

1 1.36 2

Between 1.36 and 2: totally unknown.
Raging controversy.




Study Guide

Definitions:

Approximation algorithm.

The idea of “greedy”
algorithms.

Algorithms and analysis:

Gavril algorithm for
Vertex-Cover.

MST Heuristic for TSP.




