

**Randomness and the Universe** 

### **Randomness and the Universe**

Does the universe have "true" randomness?



**Newtonian physics:** 



Quantum physics:

Randomness is an essential tool in **modeling and analyzing nature**.

It also plays a key role in **computer science**.

**Randomness and Computer Science** 



### **Randomized Algorithms**

#### **Dimer Problem:**

Given a region, in how many different ways can you tile it with 2x1 rectangles (dominoes)?



Captures thermodynamic properties of matter.







### Cryptography







# **Quantum Computing**



Probability Theory: The CS Approach



# The Big Picture



| odel                     |   |
|--------------------------|---|
|                          |   |
| outcomes<br>listribution |   |
|                          | ] |







# The Big Picture





| The Big Picture |  |
|-----------------|--|
| The CS Approach |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |



#### **Probability Tree**















|    | Conditional Probability                                  |
|----|----------------------------------------------------------|
|    | Revising probabilities based on 'partial information'.   |
|    | 'partial information' = event $E$                        |
| Co | onditioning on $E$ = Assuming/promising $E$ has happened |
|    |                                                          |







| - I  |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
| T,4) |  |
|      |  |
|      |  |
| )    |  |



e.g.













#### What is a Random Variable?







## Why?

Often we are interested in numerical outcomes (e.g. # Tails we see if we toss *n* coins)

but initially outcomes are best expressed non-numerically.

(e.g. an outcome is a sequence of *n* coin tosses)

We like talking about mean values (averages), variance, etc..

| What is a Random Variat                                                     | ole? |
|-----------------------------------------------------------------------------|------|
| 2nd Definition:                                                             |      |
|                                                                             |      |
|                                                                             |      |
| Example:                                                                    |      |
| $S \leftarrow RandInt(6) + RandInt(6)$<br>if S = 12: I <- 1<br>else: I <- 0 |      |
| Random variables:                                                           |      |
|                                                                             |      |



| Expectation of a Random Variable           |                                                                                       |                                    |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Expected Value = Mean = (Weighted) Average |                                                                                       |                                    |  |  |  |
| Weighte                                    | Weighted Average = $\sum_{\text{elements } e} \text{value}(e) \cdot \text{weight}(e)$ |                                    |  |  |  |
| Example:                                   | <u>Weight</u>                                                                         | <u>Value</u>                       |  |  |  |
|                                            | 30% Final                                                                             | 85                                 |  |  |  |
|                                            | 20% Midterm                                                                           | 75                                 |  |  |  |
|                                            | 50% Homework                                                                          | 82                                 |  |  |  |
| Weighted A                                 | <b>verage =</b> $0.3 \cdot 85 + 0.2$                                                  | $2 \cdot 75 + 0.5 \cdot 82 = 81.5$ |  |  |  |



# **Expectation of a Random Variable**



| Expectat | ion of a | Random | Variable |
|----------|----------|--------|----------|
|          |          |        |          |

#### Example

Let X = Bernoulli(6), Y = Bernoulli(6), Z = Bernoulli(6)

Let S = X + Y + Z

 $\mathbf{E}[S]$ 

 $= 3 \cdot \Pr[\boldsymbol{S} = 3] + 4 \cdot \Pr[\boldsymbol{S} = 4] + \dots + 18 \cdot \Pr[\boldsymbol{S} = 18]$ 

lot's of arithmetic :-(

= 10.5

Most Useful Equality in Probability Theory:

| Linearity of Expectation |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |

| Linearity of Expectation         |                     |                  |  |  |  |
|----------------------------------|---------------------|------------------|--|--|--|
| Example                          |                     |                  |  |  |  |
| Let $X = Bernoulli(6)$ ,         | Y= Bernoulli(6),    | Z = Bernoulli(6) |  |  |  |
| Let $S = X + Y + Z$              | Let $S = X + Y + Z$ |                  |  |  |  |
| $\mathbf{E}[oldsymbol{S}] \;=\;$ |                     |                  |  |  |  |
|                                  |                     |                  |  |  |  |
|                                  |                     |                  |  |  |  |
|                                  |                     |                  |  |  |  |

