

Randomness and the Universe

Randomness and the Universe

Does the universe have "true" randomness?

Newtonian physics:

Quantum physics:

Randomness is an essential tool in modeling and analyzing nature.

It also plays a key role in computer science.

Randomness and Computer Science

Statistics via Sampling

Population: 300m Random sample size: 2000

Theorem:

Randomized Algorithms

Dimer Problem:

Given a region, in how many different ways can you tile it with 2 xI rectangles (dominoes)?
e.g.

$\longrightarrow 1024$ tilings

Captures thermodynamic properties of matter.

Distributed Computing

Nash Equilibria in Games
The Chicken Game

Theorem (Nash):

Error-Correcting Codes

Each symbol can be corrupted with a certain probability. How can Alice still get the message across?

Communication Complexity

Want to check if the contents of two databases are exactly the same.

How many bits need to be communicated?

Quantum Computing

Probability Theory: The CS Approach

The Big Picture

The Non-CS Approach

Real World \longrightarrow Mathematical Model
(random)
experiment/process
probability space

The Big Picture
Real World \longrightarrow Mathematical Model

Flip a coin.

$$
\Omega=\text { "sample space" }
$$

= set of all possible outcomes
$\operatorname{Pr}: \Omega \rightarrow[0,1]$ prob. distribution
$\sum_{\ell \in \Omega} \operatorname{Pr}[\ell]=1 \quad$ (why?)

The Big Picture
Real World \longrightarrow Mathematical Model

Flip a coin.

unit pie, area $=$ I
$\operatorname{Pr}[$ outcome $]=$ area of outcome

$$
=\frac{\text { area of outcome }}{\text { area of pie }}
$$

The Big Picture
Real World \longrightarrow Mathematical Model

The Big Picture
Real World \longrightarrow Mathematical Model

Flip a coin.
If it is Heads, throw a 3-sided die.
If it is Tails, throw a
4-sided die.

The Big Picture

The CS Approach

The Big Picture

Flip a coin. If it is Heads, throw a 3 -sided die. If it is Tails, throw a 4-sided die.

RealWorld \longrightarrow Code \longrightarrow Probability Tree

Flip a coin.
If it is Heads, throw
a 3 -sided die.
If it is Tails, throw a 4-sided die.

What is the probability
of flipping Heads
given the die roll is ≥ 3 ? \longrightarrow
conditioning on
partial information

Conditional Probability

Revising probabilities based on 'partial information'.

$$
\text { 'partial information' = event } E
$$

Conditioning on $E=$ Assuming/promising E has happened

Conditional Probability

Conditioning

(cannot condition on an event with prob. 0)

Conditional Probability -> Chain Rule

$$
\operatorname{Pr}[A \cap B]=
$$

"For A and B to occur:

- first A must occur
- then B must occur given that A occured"

Generalizes to more than two events.
e.g.

$$
\operatorname{Pr}[A \cap B \cap C]=
$$

LTP = Law of Total Probability

$$
\operatorname{Pr}[E]=
$$

SUMMARY SO FAR

Real World \longrightarrow Code \longrightarrow
Events
Con

Conditional probability:

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]$

Probability Tree II
Mathematical Model

- set of outcomes Ω
- a prob. associated with each outcome.

Chain rule:

$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]$
Law of total probability:
$\operatorname{Pr}[B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]+\operatorname{Pr}\left[A^{c}\right] \cdot \operatorname{Pr}\left[B \mid A^{c}\right]$

Independent events:
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$

Union bound:
$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$

Random Variables

typical description: $\quad X=$ number of Tails

What is a Random Variable?

typical description: $\quad X=$ number of Tails

Why?

Often we are interested in numerical outcomes
(e.g. \#Tails we see if we toss n coins)
but initially outcomes are best expressed non-numerically. (e.g. an outcome is a sequence of n coin tosses)

We like talking about mean values (averages), variance, etc..

2nd Definition:

Example:

$$
\begin{aligned}
& \mathrm{S}<-\operatorname{RandInt}(6)+\operatorname{RandInt(6)} \\
& \text { if } \mathrm{S}=12: \\
& \text { else: } \\
& \mathrm{I}<-1 \\
& \mathrm{I}<-0
\end{aligned}
$$

Random variables:

What is a Random Variable?

$\mathrm{S}<-\operatorname{Rand} \operatorname{Int}(6)+\operatorname{RandInt}(6)$	
if $\mathrm{S}=12:$	$\mathrm{I}<-1$
else:	$\mathrm{I}<-0$

Expectation of a Random Variable

Expected Value $=$ Mean $=($ Weighted $)$ Average
Weighted Average $=\sum_{\text {elements } e}$ value $(e) \cdot$ weight (e)

Example:	Weight	Value
	30% Final	85
	20% Midterm	75
	50% Homework	82

Weighted Average $=0.3 \cdot 85+0.2 \cdot 75+0.5 \cdot 82=81.5$

Expectation of a Random Variable

Expected value of a random variable \boldsymbol{X} :

$$
\mathbf{E}[\boldsymbol{X}] \stackrel{\text { def }}{=}
$$

Expectation of a Random Variable

Example

Let $X=$ Bernoulli(6), $\quad \boldsymbol{Y}=$ Bernoulli(6), $\quad Z=$ Bernoulli(6)
Let $\boldsymbol{S}=\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}$
$\mathrm{E}[\boldsymbol{S}]$
$=3 \cdot \operatorname{Pr}[\boldsymbol{S}=3]+4 \cdot \operatorname{Pr}[\boldsymbol{S}=4]+\cdots+18 \cdot \operatorname{Pr}[\boldsymbol{S}=18]$
lot's of arithmetic :-(
$=10.5$

Most Useful Equality in Probability Theory:

Linearity of Expectation

Example

Let $\boldsymbol{X}=$ Bernoulli(6), $\quad \boldsymbol{Y}=$ Bernoulli(6), $\quad Z=$ Bernoulli(6)
Let $\boldsymbol{S}=\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}$

$$
\mathbf{E}[\boldsymbol{S}]=
$$

Next Time:

Introduction to Randomized Algorithms

