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Randomness and the Universe

Randomness and the Universe

Newtonian physics: 

Does the universe have “true” randomness?

Quantum physics:



Randomness is an essential tool in 
modeling and analyzing nature. 

It also plays a key role in computer science.

Randomness and Computer Science

Statistics via Sampling

Population: 300m Random sample size: 2000

Theorem: 



Randomized Algorithms
Dimer Problem:
Given a region, in how many different ways can you tile it
with 2x1 rectangles (dominoes)? 

Captures thermodynamic properties of matter.

1024 tilings
e.g.

Distributed Computing

Nash Equilibria in Games

The Chicken Game

Swerve

Straight

Swerve Straight

1 1

2 0 -3-3

0 2

Theorem (Nash): 



Cryptography

“Meet me at 5.”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

encryption

“Meet me at 5.”

decryption

Adversary
Eavesdropper

Shannon: 

Error-Correcting Codes

Alice Bob

“bit.ly/vrxUBN”

Each symbol can be corrupted with a certain probability.

How can Alice still get the message across?

noisy channel

Communication Complexity

Want to check if the contents of two databases are
exactly the same.

How many bits need to be communicated?



Quantum Computing

Probability Theory:
The CS Approach

The Big Picture

Real World

(random) 
experiment/process

probability space

Mathematical Model

The Non-CS Approach



The Big Picture

Real World Mathematical Model

Flip a coin.

1/2 1/2

X

`2⌦

Pr[`] = 1

    = “sample space”

H T

⌦

⌦

    = set of all possible outcomes

Pr : ⌦ ! [0, 1] prob. distribution

(why?)

The Big Picture

Real World Mathematical Model

unit pie,  area = 1

H T
Flip a coin.

Pr[outcome] = area of outcome

=
area of outcome

area of pie

The Big Picture

Real World Mathematical Model

HH
1/4

⌦

TH
1/4

HT
1/4

TT
1/4

HH HT

TH TT

Flip two coins.



The Big Picture

Real World Mathematical Model

Flip a coin. 
If it is Heads, throw 
a 3-sided die. 
If it is Tails, throw a 
4-sided die.

⌦

?

?

The Big Picture

The CS Approach

The Big Picture

flip <— Bernoulli(1/2)
if flip = 1: # i.e. Heads
    die <— RandInt(3)
else:
    die <— RandInt(4)

Flip a coin. 
If it is Heads, throw 
a 3-sided die. 
If it is Tails, throw a 
4-sided die.



Probability Tree

Bernoulli(1/2)

RandInt(3) RandInt(4)

flip <— Bernoulli(1/2)
if flip = H:
    die <— RandInt(3)
else:
    die <— RandInt(4)

Outcomes:

Prob:

H T
1/2 1/2

1 2 3
1/3 1/3 1/3

1 2 3 4
1/4 1/4 1/4 1/4

(H,1) (H,2) (H,3) (T,1) (T,2) (T,3) (T,4)

1/6 1/6 1/6 1/8 1/8 1/8 1/8

Events

What is the probability
die roll is ≥ 3 ?

“event”

Real World Code Probability Tree

flip <— Bernoulli(1/2)
if flip = H:
    die <— RandInt(3)
else:
    die <— RandInt(4)

Flip a coin. 
If it is Heads, throw 
a 3-sided die. 
If it is Tails, throw a 
4-sided die.

Events
Bernoulli(1/2)

RandInt(3) RandInt(4)

H T

1 2 3 1 2 3 4

Outcomes:

Prob:

1/2 1/2

1/3 1/3 1/3 1/4 1/4 1/4 1/4

(H,1) (H,2) (H,3) (T,1) (T,2) (T,3) (T,4)

1/6 1/6 1/6 1/8 1/8 1/8 1/8

E = die roll is 3 or higher

Pr : P(⌦) ! [0, 1]

Extend Pr to:



Conditional Probability

What is the probability
of flipping Heads

given the die roll is ≥ 3 ?
conditioning on

 partial information

Real World Code Probability Tree

flip <— Bernoulli(1/2)
if flip = H:
    die <— RandInt(3)
else:
    die <— RandInt(4)

Flip a coin. 
If it is Heads, throw 
a 3-sided die. 
If it is Tails, throw a 
4-sided die.

Conditional Probability

Revising probabilities based on ‘partial information’.

‘partial information’ = event E

Conditioning on E  =  Assuming/promising E has happened 

Conditional Probability
Bernoulli(1/2)

RandInt(3) RandInt(4)

H T

1 2 3 1 2 3 4

Outcomes:

Prob:

1/2 1/2

1/3 1/3 1/3 1/4 1/4 1/4 1/4

(H,1) (H,2) (H,3) (T,1) (T,2) (T,3) (T,4)

1/6 1/6 1/6 1/8 1/8 1/8 1/8

E = die roll is 3 or higher

Prob | E : 0 0 2/5 0 0 3/10 3/10



Conditioning

(H,1)
1/6

⌦

(T,1)
1/8

(H,2)
1/6

(H,3)
1/6

(T,2)
1/8

(T,3)
1/8

(T,4)
1/8

E
(H,3)
2/5

(T,3)
3/10

(T,4)
3/10

E

(H,3) (T,4)

(T,3)(H,3) (T,3)

(T,4)

Pr : ⌦ ! [0, 1] PrE : E ! [0, 1]

Conditioning

(H,3) (T,3)

(T,4)

(H,3) (T,4)

(T,3)

Pr : ⌦ ! [0, 1] PrE : E ! [0, 1]

A

Pr[A | E] =

(cannot condition on an event with prob. 0)

Conditional Probability -> Chain Rule

“For A and B to occur:
    - first A must occur  
    - then B must occur given that A occured”

Generalizes to more than two events.
e.g.

Pr[A \B \ C] =

Pr[A \B] =



Conditional Probability -> LTP
LTP = Law of Total Probability

⌦ E Ac

A

E \A E \Ac

Pr[E] =

Real World

Mathematical Model

Code Probability Tree=

- set of outcomes ⌦
- a prob. associated
  with each outcome. 

SUMMARY SO FAR

 Events

 Conditional probability:
Pr[A | B] = Pr[A \B]/Pr[B]

 Chain rule:
Pr[A \B] = Pr[A] · Pr[B | A]

 Law of total probability:
Pr[B] = Pr[A] · Pr[B | A] + Pr[Ac] · Pr[B | Ac]

 Independent events:
Pr[A \B] = Pr[A] · Pr[B]

 Union bound:
Pr[A [B]  Pr[A] + Pr[B]

Random Variables



What is a Random Variable?

H

T

1/2

1/2

⌦

0

1

1/2

1/2

X

X =  number of Tailstypical description:

range(X) ✓ R

What is a Random Variable?

HH
1/4

⌦ X

HT
1/4

TH
1/4

TT
1/4

0
1/4

2
1/4

1
1/2

X =  number of Tailstypical description:

range(X) ✓ R

Why?

Often we are interested in numerical outcomes
(e.g.  # Tails we see if we toss n coins)

but initially outcomes are best expressed non-numerically.
(e.g.  an outcome is a sequence of n coin tosses)

We like talking about mean values (averages), variance, etc..



What is a Random Variable?

Example:

S <— RandInt(6) + RandInt(6)
if S = 12:   I <— 1
else:           I <— 0

Random variables:  

2nd Definition:

What is a Random Variable?
S <— RandInt(6) + RandInt(6)
if S = 12:   I <— 1
else:           I <— 0

S = 
I =

S =
I =

RandInt(6)

RandInt(6) … RandInt(6) RandInt(6)…

(1,1) (1,6)(1,4) (2,5) (6,6)… … … … … …… (6,1)

S =
I =

S =
I =

Expectation of a Random Variable

Expected Value  =  Mean  =  (Weighted) Average

X

elements e

value(e) · weight(e)Weighted Average =

Weighted Average =

30% Final 
20% Midterm 
50% Homework

Weight

85 
75 
82

ValueExample:

0.3 · 85 + 0.2 · 75 + 0.5 · 82 = 81.5



Expectation of a Random Variable

Expected value of a random variable     : X

def
E[X] =

X

x2range(X)

x · Pr[X = x]

Expectation of a Random Variable

E[S]

Let     

Let      = Bernoulli(6),        = Bernoulli(6),        = Bernoulli(6)X Y Z

S = X + Y +Z

= 3 · Pr[S = 3] + 4 · Pr[S = 4] + · · ·+ 18 · Pr[S = 18]

lot’s of arithmetic :-(

= 10.5

Example

Most Useful Equality in Probability Theory:



Linearity of Expectation

Let     

Let      = Bernoulli(6),        = Bernoulli(6),        = Bernoulli(6)X Y Z

S = X + Y +Z

Linearity of Expectation

E[S] = E[X + Y +Z]

= E[X] +E[Y +Z]

= E[X] +E[Y ] +E[Z]

= 3.5 + 3.5 + 3.5

= 10.5

Example

Next Time:

Introduction to Randomized Algorithms


