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Most Common 3 Random Variables

Bernoulli Random Variable

X ~ Bernoulli(p) means:

“ X is a Bernoulli random variable with success probability p.”

X = Bernoulli(p)

So range(X) =

E[X]




Binomial Random Variable

X ~ Binomial(n,p) means:

X=X +X,++X,

where X; ~ Bernoulli(p) forall i € {1,2,...,n},

and the X;’s are independent.
So range(X) ={0,1,2,...,n}

Geometric Random Variable

X ~ Geometric(p) means:

“number of p-biased coin flips until we see H for the first time.”

Geometric Random Variable
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MarkovV’s Inequality

A non-negative random variable X
is rarely much bigger than its
expectation E[X].

Theorem:
Let X be a random variable that is always non-negative.

Then forany ¢ >1,

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

(i) the input can be chosen randomly

(ii) the algorithm can make random choices

Which one will we focus on?




Randomness and algorithms

In 15-251:

to call:

What is a randomized algorithm?

A randomized algorithm is an algorithm that is allowed to
“flip a coin” (i.e., has access to random bits).

A randomized algorithm is an algorithm that is allowed

Randomness and algorithms

decision/computational problem if

A randomized algorithm computes a

(what?)

Deterministic vs Randomized

Deterministic

def A(x):
y=1
if(y == 0):
while(x > 0):
x=x-1
return x+y

= the output

= the running time

Randomized

def A(x):
y = Bernoulli(0.5)
if(y == 0):
while(x > 0):
x=x-1
return x+y

For any fixed input (e.g.x = 3):

= the output

= the running time




Deterministic vs Randomized

A deterministic algorithm A computes f:¥X* — ¥*
intime 7(n) means:

- correctness: Vr € X%,

- running time: Vz € X%,

Note: we require worst-case guarantees for
correctness and run-time.

Deterministic vs Randomized

A Try

A randomized algorithm A computes f: X" — ¥~
intime 7'(n) means:

- correctness: Vr € X*,

- running time: Vz € ©*,

Is this interesting?

Vo e ¥F
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Example: Battleship

Input: An array B with n/4 I’s and 3n/4 0.
Output: An index that contains a |.
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Example: Battleship

Input: Anarray B with n/4 I’s and 3n/4 Os.
Output: An index that contains a |.

Deterministic Randomized
Type | (Monte Carlo) Type 2 (Las Vegas)

Example: Battleship

Input: An array B with n/4 I's and 3n/4 0’s.
Output: An index that contains a |.

Correctness Run-time

Monte Carlo

Las Vegas




Formal Definitions

Formal Definition: Deterministic

Let f:X¥* — ¥* be a computational problem.

We say that deterministic algorithm A
computes f intime T'(n) if:

Ve e 3% A(z) = f(x)

Ve € ¥%,| 4 steps A(z) takes is < T'(|z]).

Picture: T Deterministic:




Formal Definition: Monte Carlo

Let f:X* — ¥* be a computational problem.

We say that randomized algorithm A
isa T'(n)-time Monte Carlo algorithm for f
with € error probability if:

Vo e XF,
Ve € XF,
Picture: x Monte Carlo:
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Formal Definition: Las Vegas

Let f:X* — X" be a computational problem.

We say that randomized algorithm A
isa T'(n)-time Las Vegas algorithm for f if:

Vo € X7,

Ve e ¥F,




Picture: x Las Vegas:

l Each input x induces
l a probability tree.
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More Examples

3 IMPORTANT PROBLEMS
Int Factorizati
Input: integer N
Ouput: a prime factor of N

isPrime
Input: integer N
Ouput: True if N is prime.

Generating a (random) n-bit prime
Input: integer n

Ouput: a (random) n-bit prime




Most crypto systems start like:
- pick two random n-bit primes P and Q.
-let N =PQ. (Nissome kind of a“key”)

- (more steps...)

We should be able to do efficiently the following:

- check if a given number is prime.

- generate a random prime.

We should not be able to do efficiently the following:

- given N, find P and Q. (the system is broken if we can do this!!!)

def isPrime(N):
if (N < 2): return False
maxFactor = round(N**0.5)
for factor in range(2, maxFactor+1):
if (N % factor == 0): return False
return True

Problems:

Amazing result from 2002:

There is a poly-time algorithm for isPrime.

wa
Agrawal, Kayal, Saxena

However, best known implementation is ~ O(n°) time.
Not feasible when n = 2048 .




So that’s not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).
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Professor

The running time is:

Why is the previous result a breakthrough?

Generating an n-bit prime

repeat:

let N be a random n-bit number
if isPrime(N): return N

Prime Number Theorem (informal):

— expected run-time of the above algorithm ~

No poly-time deterministic algorithm is known
to generate an n-bit prime!!!

Randomized Algorithms meet
Approximation Algorithms

Randomized approximation algorithms for
optimization problems




Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph G = (V, E) ,
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

S V-5
red blue

Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph G = (V| E),
find a subset S C V such that
number of edges from S to V — S is maximized.

S V=S

“

size of the cut = # edgesfrom S to V —S.

| Max Cut Problem is INP-hard! |

Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph G = (V, E),
find a non-empty subset S C V such that
number of edges from S to V — .S is minimized.

S V-=5

“

size of the cut = # edgesfrom S to V — 5.




Randomized Approximation Algorithm
for Max Cut

Most Useful Equality in Probability Theory:

Linearity of Expectation

E[X + Y] = E[X] + E[Y]

X and Y need not be independent!

(E[X - Y] = E[X] - E[Y] not always true!)

Most Useful Type of Random Variable:

Indicator Random Variable

Event —> Random Variable

Let A be an event. The indicator r.v. for A is:

IA:{

PrlIy=1] =




High Level Idea

Want to compute E[X]:

Write X=IL+I,+ ---+1,. (sum of indicator r.v’s)

Then E[X]=

Approximation Alg. for Max Cut




NEXT TIME:

Monte Carlo Algorithm
for Min Cut




