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 15-251: Great Ideas in 
              Theoretical Computer Science 
  Lecture 19:  Randomized Algorithms 1

Most Common 3 Random Variables

Bernoulli Random Variable

means:X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Pr[X = 1] = p

Pr[X = 0] = 1� p

Check:

E[X] = p

range(X) = {0, 1}So

X = Bernoulli(p)



Binomial Random Variable

means:X ⇠ Binomial(n, p)

X = X1 +X2 + · · ·+Xn

where                                 for all                           , Xi ⇠ Bernoulli(p) i 2 {1, 2, . . . , n}

and the       ’s are independent.Xi

Check:

Pr[X = i] =

✓
n

i

◆
pi(1� p)n�i E[X] = np

range(X) = {0, 1, 2, . . . , n}So
X = 0
repeat n times: 
    X += Bernoulli(p)

Geometric Random Variable

means:X ⇠ Geometric(p)

“number of p-biased coin flips until we see H for the first time.”

X = 1 
while Bernoulli(p) == 0:
    X += 1

Geometric Random Variable
Bernoulli(p)

Bernoulli(p)

Bernoulli(p)

X = 1

0 1
p(1-p)

0 1
p(1-p)

0 1
p(1-p)

X = 2

X = 3...

range(X) = {1, 2, 3, . . .}

Pr[X = i] = (1� p)i�1p

1X

i=1

Pr[X = i] = 1

(geometric sum)

E[X] = 1/p



Markov’s Inequality

A non-negative random variable
is rarely much bigger than its 
expectation          .

X

E[X]

Pr[X � c ·E[X]]  1

c
.

Let      be a random variable that is always non-negative.X

Then for any           ,c � 1

Theorem:

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

(i) the input can be chosen randomly 

(ii) the algorithm can make random choices

Which one will we focus on?



Randomness and algorithms

A randomized algorithm is an algorithm that is allowed to 
“flip a coin” (i.e., has access to random bits).

What is a randomized algorithm?

In 15-251:
A randomized algorithm is an algorithm that is allowed 
to call:

Randomness and algorithms

A randomized algorithm computes a 

decision/computational problem if _________________  
                                                  (what?)

Deterministic vs Randomized

For any fixed input (e.g. x = 3):

def A(x): 
     y = 1 
     if(y == 0): 
          while(x > 0): 
               x = x - 1 
     return x+y

Deterministic

- the output is invariant

- the running time is invariant

- the output can vary

- the running time can vary

def A(x): 
     y = Bernoulli(0.5) 
     if(y == 0): 
          while(x > 0): 
               x = x - 1 
     return x+y

Randomized



Deterministic vs Randomized

- correctness:                

- running time:                        

A deterministic algorithm      computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

Note:  we require worst-case guarantees for
           correctness and run-time.

8x 2 ⌃⇤ , A(x) = f(x) .

# steps A(x) takes is  T (|x|).8x 2 ⌃⇤ ,

Deterministic vs Randomized

A randomized algorithm       computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness:                 ,                       .

- running time:              ,         

8x 2 ⌃⇤ A(x) = f(x)

8x 2 ⌃⇤ # steps A(x) takes is  T (|x|).

A Try

Is this interesting?

Deterministic

Type 1

Type 2

Correctness Run-time

Type 3

Randomized

Type 0

Type 0:  may as well be deterministic

Type 1:  “Monte Carlo algorithm”

Type 2:  “Las Vegas algorithm”

Type 3:  Can be converted to type 1. (exercise/hw)

8x 2 ⌃⇤



Example: Battleship

Input:   An array B with  n/4  1’s  and  3n/4  0’s.

Output:   An index that contains a 1.

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Example: Battleship

Input:   An array B with  n/4  1’s  and  3n/4  0’s.

Output:   An index that contains a 1.

Deterministic Randomized
Type 1 (Monte Carlo) Type 2 (Las Vegas)

Example: Battleship

Monte Carlo

Las Vegas

Correctness Run-time

Input:   An array B with  n/4  1’s  and  3n/4  0’s.

Output:   An index that contains a 1.



Formal Definitions

Formal Definition:  Deterministic 

8x 2 ⌃⇤, # steps A(x) takes is  T (|x|).

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that deterministic algorithm      
computes      in time           if:

A
T (n)f

8x 2 ⌃⇤, A(x) = f(x)

Deterministic:x

0

Picture:



Formal Definition:  Monte Carlo 

8x 2 ⌃⇤,

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Monte Carlo algorithm for 
with     error probability if:

A
T (n) f
✏

8x 2 ⌃⇤,

Each input     induces
a probability tree.

x

Monte Carlo:

Bernoulli(0.5)

Bernoulli(0.5) Bernoulli(0.5)

01

1/2 1/2

1/2 1/2

x

0

1/2 1/2

0

Picture:

Formal Definition:  Las Vegas 

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Las Vegas algorithm for     if:

A
T (n) f

8x 2 ⌃⇤,

8x 2 ⌃⇤,



Bernoulli(0.5)

Bernoulli(0.5) Bernoulli(0.5)

1/2 1/2

1/2 1/2

x

0

1/2 1/2

0

Each input     induces
a probability tree.

x

Las Vegas:

0

0

Picture:

More Examples

3 IMPORTANT PROBLEMS

Integer Factorization
Input:  integer N

Ouput:  a prime factor of N

isPrime
Input:  integer N

Ouput:  True if N is prime.

Generating a (random) n-bit prime
Input:  integer n

Ouput:  a (random) n-bit prime



We should be able to do efficiently the following:

- check if a given number is prime.

- generate a random prime.

We should not be able to do efficiently the following:

- given N,  find P and Q.

Most crypto systems start like:
- pick two random n-bit primes P and Q.

- let  N = PQ.   (N is some kind of a “key”)

- (more steps…)

(the system is broken if we can do this!!!)

isPrime
def isPrime(N):
    if (N < 2):  return False
    maxFactor = round(N**0.5)
    for factor in range(2, maxFactor+1):
        if (N % factor == 0):  return False
    return True

Problems:

isPrime
Amazing result from 2002:

There is a poly-time algorithm for isPrime.

Agrawal,  Kayal,      Saxena

However, best known implementation is ~           time. O(n6)

Not feasible when                 .n = 2048



isPrime
So that’s not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).

CMU
Professor

The running time is:           

Why is the previous result a breakthrough?

Generating an n-bit prime
repeat: 
    let N be a random n-bit number 
    if isPrime(N): return N

Prime Number Theorem (informal):

=)expected run-time of the above algorithm ~

No poly-time deterministic algorithm is known
to generate an  n-bit  prime!!!

Randomized Algorithms meet
Approximation Algorithms

Randomized approximation algorithms for 
optimization problems



Cut Problems

S V � S

red blue

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)

Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
find a subset            such that
number of edges from       to             is maximized.

G = (V,E)
S ⇢ V

S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S

Max Cut Problem is NP-hard!

Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is minimized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S



Randomized Approximation Algorithm 
for Max Cut

Most Useful Equality in Probability Theory:

Linearity of Expectation

E[X + Y ] = E[X] +E[Y ]
    and     need not be independent!X Y

(                                        not always true!)E[X · Y ] = E[X] ·E[Y ]

Most Useful Type of Random Variable:

Indicator Random Variable

Event —>  Random Variable

Let A be an event. The indicator r.v. for A is:

IA =

(
1 if A happens

0 otherwise

Pr[IA = 1] = Pr[A]

E[IA] = 0 · Pr[IA = 0] + 1 · Pr[IA = 1] = Pr[A]



High Level Idea

Want to compute          :E[X]

= E[I1] +E[I2] + · · ·+E[In]

= n ·E[I1]

= n · Pr[I1 = 1]

E[X] = E[I1 + I2 + · · ·+ In]Then                                   

(probability that the corresponding event happens)

Write                                   . X = I1 + I2 + · · ·+ In (sum of indicator r.v.’s)

Awesome!

Approximation Alg. for Max Cut

Analysis



Monte Carlo Algorithm 
for Min Cut

NEXT TIME:


