15-25 I: Great Ideas in

Theoretical Computer Science
Lecture 19: Randomized Algorithms I

Most Common 3 Random Variables

Bernoulli Random Variable

$\boldsymbol{X} \sim \operatorname{Bernoulli}(p)$ means:
" \boldsymbol{X} is a Bernoulli random variable with success probability p."

$$
\begin{array}{ll}
& \operatorname{Pr}[\boldsymbol{X}=1]= \\
& \operatorname{Pr}[\boldsymbol{X}=0]= \\
\text { So } \operatorname{range}(\boldsymbol{X})=
\end{array}
$$

Check:
$\mathrm{E}[\boldsymbol{X}]=$

Binomial Random Variable

$\boldsymbol{X} \sim \operatorname{Binomial}(n, p)$ means:
$\boldsymbol{X}=\boldsymbol{X}_{1}+\boldsymbol{X}_{2}+\cdots+\boldsymbol{X}_{n}$
where $\boldsymbol{X}_{i} \sim \operatorname{Bernoulli}(p)$ for all $i \in\{1,2, \ldots, n\}$,
and the \boldsymbol{X}_{i} 's are independent.
So $\operatorname{range}(\boldsymbol{X})=\{0,1,2, \ldots, n\}$

Check:

$\operatorname{Pr}[\boldsymbol{X}=i]=$
$\mathbf{E}[\boldsymbol{X}]=$

Geometric Random Variable

$\boldsymbol{X} \sim \operatorname{Geometric}(p)$ means:

"number of p-biased coin flips until we see \mathbf{H} for the first time."

Geometric Random Variable

Markov's Inequality

A non-negative random variable \boldsymbol{X} is rarely much bigger than its expectation $\mathbf{E}[\boldsymbol{X}]$.

Theorem:

Let \boldsymbol{X} be a random variable that is always non-negative.
Then for any $c \geq 1$,

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:
(i) the input can be chosen randomly
(ii) the algorithm can make random choices

Which one will we focus on?

Randomness and algorithms

What is a randomized algorithm?

A randomized algorithm is an algorithm that is allowed to "flip a coin" (i.e., has access to random bits).

In 15-251:

A randomized algorithm is an algorithm that is allowed to call:

Randomness and algorithms

A randomized algorithm computes a decision/computational problem if \qquad
(what!)

Deterministic vs Randomized

Deterministic	Randomized
$\begin{aligned} & \text { def } \mathrm{A}(\mathrm{x}) \text { : } \\ & \mathrm{y}=1 \\ & \text { if }(\mathrm{y}=0): \\ & \text { while }(x>0) \text { : } \\ & \mathrm{x}=\mathrm{x}-1 \\ & \text { return } \mathrm{x}+\mathrm{y} \end{aligned}$	$\begin{aligned} & \text { def } \mathrm{A}(\mathrm{x}): \\ & \mathrm{y}=\operatorname{Bernoulli}(0.5) \\ & \text { if }(\mathrm{y}=0) \text { : } \\ & \text { while }(x>0) \text { : } \\ & \mathrm{x}=\mathrm{x}-1 \\ & \text { return } \mathrm{x}+\mathrm{y} \end{aligned}$
For any fixed input (e.g. $x=3$):	
- the output - the running time	- the output - the running time

A deterministic algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}$,
- running time: $\forall x \in \Sigma^{*}$,

Note: we require worst-case guarantees for correctness and run-time.

Deterministic vs Randomized

A Try

A randomized algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}$,
- running time: $\forall x \in \Sigma^{*}$,

Is this interesting?

Input: An array B with $\mathrm{n} / 4$ I's and $3 \mathrm{n} / 4$ 0's.
Output: An index that contains a 1 .

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Example: Battleship

Input: An array B with $n / 4$ l's and $3 n / 4$ O's.
Output: An index that contains a I.

Deterministic	Randomized	
Type I (Monte Carlo)	Type 2 (Las Vegas)	

Example: Battleship

Input: An array B with $n / 4$ I's and $3 n / 4$ O's.
Output: An index that contains a 1 .

	Correctness	Run-time
Monte Carlo		

Formal Definitions

Formal Definition: Deterministic

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

We say that deterministic algorithm A
computes f in time $T(n)$ if:

$$
\forall x \in \Sigma^{*}, \quad A(x)=f(x)
$$

$\forall x \in \Sigma^{*}$, \# steps $A(x)$ takes is $\leq T(|x|)$.

Picture:

Deterministic:

Formal Definition: Monte Carlo

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

We say that randomized algorithm A is a $T(n)$-time Monte Carlo algorithm for f with ϵ error probability if:

$$
\begin{aligned}
& \forall x \in \Sigma^{*} \\
& \forall x \in \Sigma^{*}
\end{aligned}
$$

Formal Definition: Las Vegas

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

We say that randomized algorithm A is a $T(n)$-time Las Vegas algorithm for f if:

$$
\forall x \in \Sigma^{*}
$$

$$
\forall x \in \Sigma^{*}
$$

More Examples

3 IMPORTANT PROBLEMS

Integer Factorization

Input: integer N
Ouput: a prime factor of N

isPrime

Input: integer N
Ouput: True if N is prime.

Generating a (random) n-bit prime

Input: integer n
Ouput: a (random) n-bit prime

Most crypto systems start like:

- pick two random n-bit primes P and Q .
- let $N=P Q . \quad(N$ is some kind of a "key")
- (more steps...)

We should be able to do efficiently the following:

- check if a given number is prime.
- generate a random prime.

We should not be able to do efficiently the following:

- given N , find P and Q . (the system is broken if we can do this!!!)

isPrime

def isPrime (N):
if $(\mathrm{N}<2)$: return False
maxFactor $=\operatorname{round}\left(\mathrm{N}^{* *} 0.5\right)$
for factor in range (2 , maxFactor +1):
if ($\mathrm{N} \%$ factor $=0$): return False
return True

Problems:

isPrime

Amazing result from 2002:

There is a poly-time algorithm for isPrime.

Agrawal, Kayal, Saxena

However, best known implementation is $\sim O\left(n^{6}\right)$ time.
Not feasible when $n=2048$.

isPrime

So that's not what we use in practice.
Everyone uses the Miller-Rabin algorithm (1975).

The running time is:
Why is the previous result a breakthrough?

Generating an n-bit prime

repeat:

let N be a random n -bit number
if isPrime (N) : return N

Prime Number Theorem (informal):

\Longrightarrow expected run-time of the above algorithm ~
No poly-time deterministic algorithm is known to generate an n-bit prime!!!

Randomized Algorithms meet Approximation Algorithms

Randomized approximation algorithms for optimization problems

Cut Problems

Max Cut Problem (Ryan O'Donnell's favorite problem): Given a connected graph $G=(V, E)$, color the vertices red and blue so that the number of edges with two colors $(\mathrm{e}=\{\mathbf{u}, \mathbf{v}\})$ is maximized.

blue

Cut Problems

Max Cut Problem (Ryan O'Donnell's favorite problem):
Given a connected graph $G=(V, E)$,
find a subset $S \subset V$ such that
number of edges from S to $V-S$ is maximized.

size of the cut $=$ \# edges from S to $V-S$.
Max Cut Problem is NP-hard!

Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph $G=(V, E)$, find a non-empty subset $S \subset V$ such that number of edges from S to $V-S$ is minimized.

size of the cut $=\#$ edges from S to $V-S$.

Randomized Approximation Algorithm for Max Cut

Most Useful Equality in Probability Theory:

Linearity of Expectation

$\mathbf{E}[\boldsymbol{X}+\boldsymbol{Y}]=\mathbf{E}[\boldsymbol{X}]+\mathbf{E}[\boldsymbol{Y}]$

\boldsymbol{X} and \boldsymbol{Y} need not be independent!
$(\mathbf{E}[\boldsymbol{X} \cdot \boldsymbol{Y}]=\mathbf{E}[\boldsymbol{X}] \cdot \mathbf{E}[\boldsymbol{Y}]$ not always true!)

Most Useful Type of Random Variable:

Indicator Random Variable
Event —> Random Variable

Let A be an event. The indicator r.v. for A is:

$$
\boldsymbol{I}_{A}=\{
$$

$\operatorname{Pr}\left[\boldsymbol{I}_{A}=1\right]=$
$\mathbf{E}\left[\boldsymbol{I}_{A}\right]=$

High Level Idea

Want to compute $\mathrm{E}[\boldsymbol{X}]$:

Write $\quad \boldsymbol{X}=\boldsymbol{I}_{1}+\boldsymbol{I}_{2}+\cdots+\boldsymbol{I}_{n} . \quad$ (sum of indicator r.v.s)

Then $\mathbf{E}[\boldsymbol{X}]=$
$=$
$=$
$=$

Approximation Alg. for Max Cut

Analysis

NEXT TIME:

Monte Carlo Algorithm

for Min Cut

