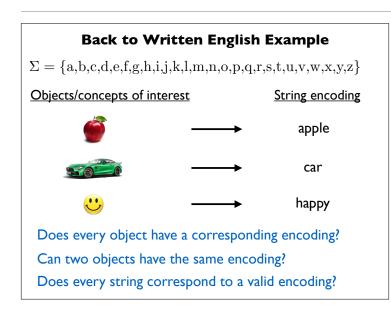
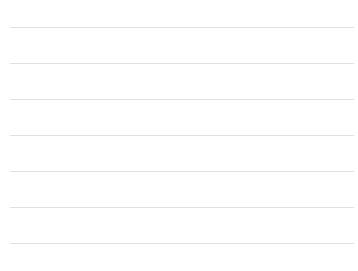


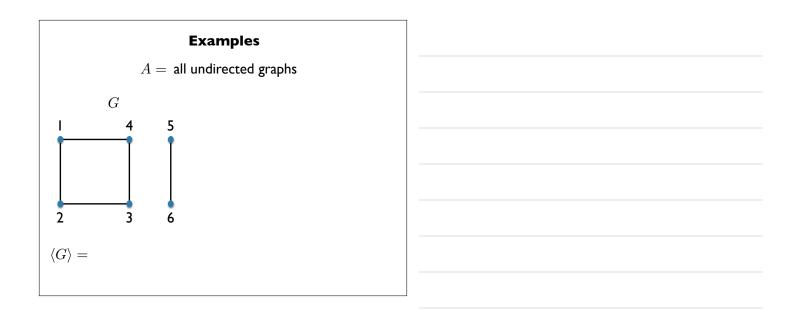
English alphabet	
$\Sigma = \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\}$	
<u>Turkish alphabet</u>	
$\Sigma = \{a, b, c, \varsigma, d, e, f, g, \bar{g}, h, \iota, j, k, l, m, n, o, \ddot{o}, p, r, s, \varsigma, t, u, \ddot{u}, v, y, z\}$	
What if we had more symbols?	
What if we had less symbols?	
Binary alphabet	
$\Sigma = \{0, 1\}$	

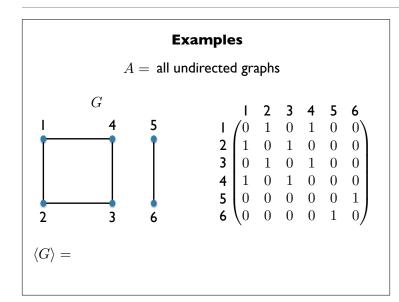
alphabet:	
symbol/character:	
string/word:	

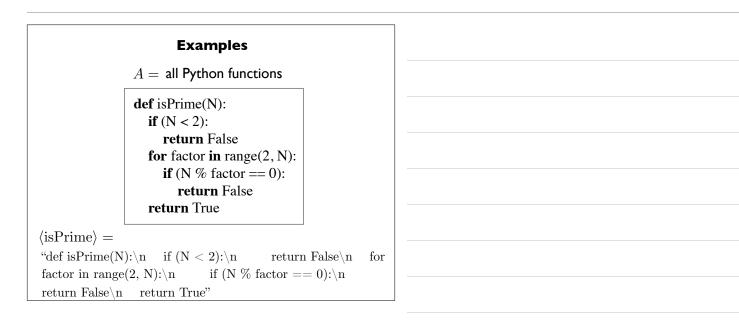


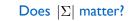


 $A=\mathbb{N}\times\mathbb{N}$



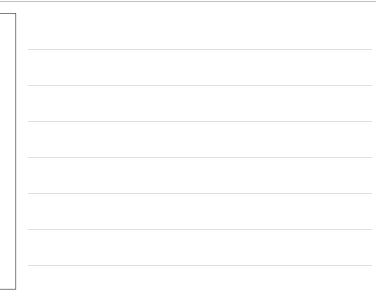


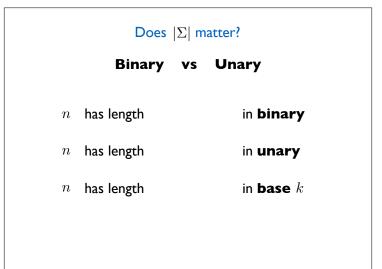


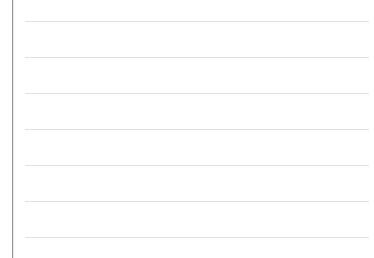


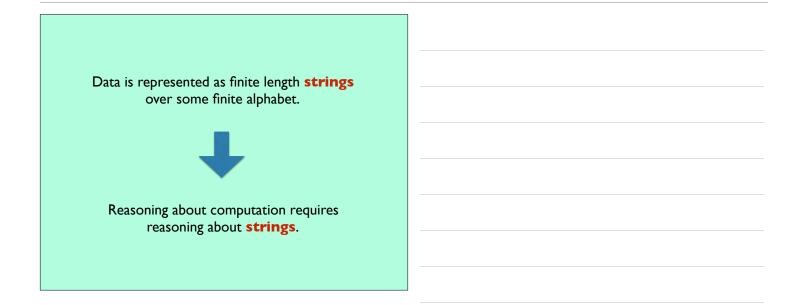
Going from $|\Sigma|=k\;$ to $|\Sigma'|=2$:

	Does $ \Sigma $ matter?		
$A = \mathbb{N}$	Binary	vs Unary	
0 2 3 4 5 6 7 8 9 0 1 1 2	0 0 1 00 01 10 00 00 010 100	ϵ	









Induction

(powerful tool for understanding recursive structures)

Induction Review

Domino Principle

Line up any number of dominos in a row, knock the first one over and they will all fall.

Induction Review

Domino Principle

Line up an <u>infinite</u> row of dominoes, one domino for each natural number. Knock the first one over and they will all fall.

Proof: Proof by contradiction: suppose they don't all fall. Let **k** be the *lowest numbered domino* that remains standing. Domino **k-I** did fall. But then **k-I** knocks over **k**, and **k** falls. So **k** stands and falls, which is a contradiction.

Induction Review Mathematical induction: statements proved instead of dominoes fallen Infinite sequence of dominoes Infinite sequence of statements: $S_0, S_1, S_2, ...$ $F_k =$ "domino k fell" $F_k =$ "S_k proved" Establish: 1. F_0 2. for all k, F_0, F_1,...,F_k \Longrightarrow F_{k+1} Conclude: F_k is true for all k.

Different ways of packaging inductive reasoning	
STRONG INDUCTION	
METHOD OF MIN COUNTER-EXAMPLE	
INVARIANT INDUCTION	
STRUCTURAL INDUCTION	
•••	

Induction on objects with a recursive structure.

- arrays/lists
- strings
- graphs

:

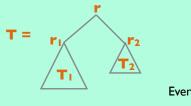
Structural Induction

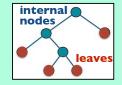
Recursive definition of a string over Σ :

- the empty sequence ϵ is a string.
- if x is a string and $a\in\Sigma$, then ax is a string.

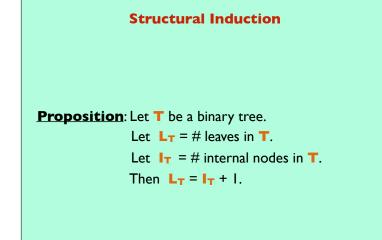
Recursive definition of a rooted binary tree:

- a single node **r** is a binary tree with root **r**.
- if **T**₁ and **T**₂ are binary trees with roots **r**₁ and **r**₂, then **T** which has a node **r** adjacent to **r**₁ and **r**₂ is a binary tree with root **r**.





Every node has 0 or 2 children.



Structural Induction

Proof (by structural induction):

The outline of structural induction:

Base step: check statement true for base case(s) of def'n.

Recursive/induction step:

prove statement holds for **new objects** created by the recursive rule, assuming it holds for **old objects** used in the recursive rule.

Structural Induction

Why is that valid?

Usually another explicit parameter can be used to induct on.

Previous example: could induct on the parameter height.

Structural Induction

Be careful!

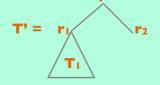
What is wrong with the following argument?

Strong induction on height.

Base case true.

Take an arbitrary binary tree **T** of height **h**.

Let **T**' be the following tree of height **h**+**I**:



blah blah blah

Therefore statement true for **T**' of height **h+1**.

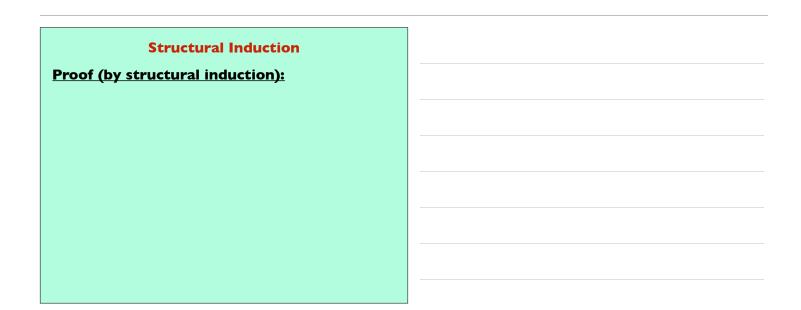
Another example with strings:

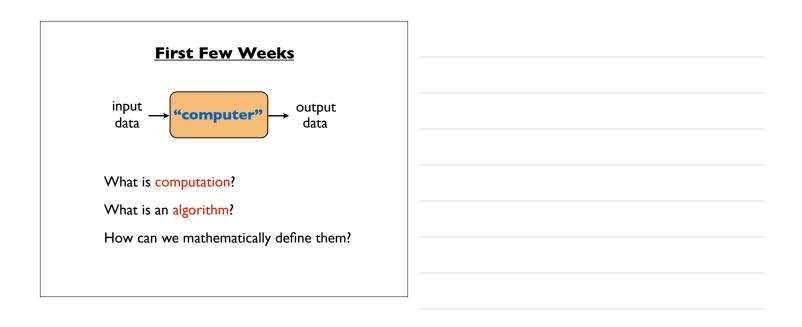
- Let $L \subseteq \{0,1\}^*$ be recursively defined as follows: - $\epsilon \in L$;
- if $x, y \in L$, then $0x1y0 \in L$.

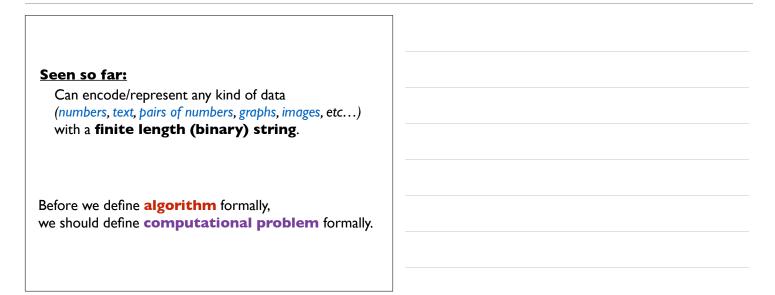
Prove that for any
$$w \in L$$
, $\#(0,w) = 2 \cdot \#(1,w)$.

number of 0's in w

number of I's in w







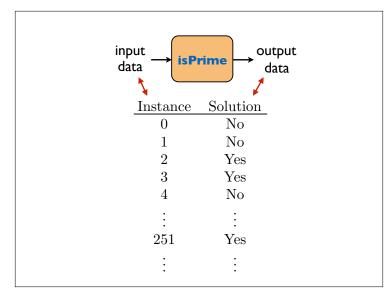
An algorithm solves a computational problem.

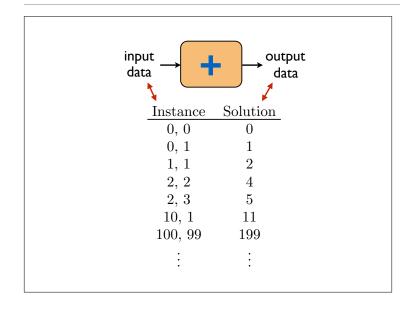
Example description of a computational problem:

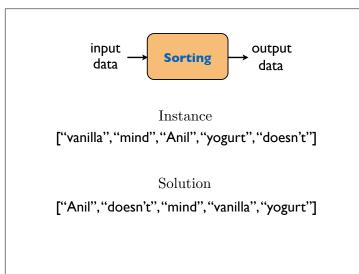
Given a natural number \mathbb{N} , output *True* if \mathbb{N} is prime, and output *False* otherwise.

Example algorithm solving it:

def isPrime(N):
 if (N < 2): return False
 for factor in range(2, N):
 if (N % factor == 0): return False
 return True</pre>







A computational problem is a function

 $f:I\to S$.

I = set of possible input objects (called instances)

 $S={\rm \ set\ of\ possible\ output\ objects\ (called\ solutions)}}$

But in TCS, we don't deal with arbitrary objects, we deal with **strings** (encodings).

Technicality: What if $w \in \Sigma^*$ does not correspond to an encoding of an instance?

In TCS, there is only one type of data:

string

IMPORTANT DEFINITIONS

There is a one-to-one correspondence between decision problems and languages.

Our focus will be on languages! (decision problems)

computational problem \approx corresponding decision problem

Integer factorization problem:

Given as input a natural number \mathbb{N} , output its prime factorization.

Decision version:

Given as input natural numbers N and k, does N have a factor between I and k?

INTERESTING QUESTIONS WE WILL EXPLORE ABOUT COMPUTATION

Are all languages computable/decidable?

If not, how can we prove that a language is not decidable?

How do we measure complexity of algorithms deciding languages?

How do we classify languages according to resources needed to decide them?

P =	NP?
-----	-----