15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 22

Group Theory

Group Theory

Study of symmetries and transformations
of mathematical objects.

Also, the study of abstract algebraic
objects called ‘groups’.

What is group theory good for?

In theoretical computer science:

Cryptography: Fully homomorphic encryption,
obfuscation...

Quantum algorithms

Mulmuley’s approach to P vs. NP
Checksums, error-correction schemes
Minimizing space usage of algorithms
Derandomization




What is group theory good for?

In puzzles and games:

“15 Puzzle”

Rubik’s Cube

Tangles

What is group theory good for?

In math:

There’s a quadratic formula:

. —b =+ /b2 - 4ac

2a

X

What is group theory good for?

In math:

There’s a cubic formula:




What is group theory good for?

In math:

There’s a quartic formula:

(That’s just the first of four roots, actually.)

What is group theory good for?

In math:

There is NO quintic formula.

What is group theory good for?

In physics:

Predicting the existence of elementary

particles before they are discovered.




What is group theory good for?

In entertainment:

Driving the plot of SO6E10 of Futurama,

“The Prisoner of Benda”

So: What is group theory?

Rotate




Head-to-Toe flip

Q: How many positions can it be in?




Group theory is not so much
about objects (like mattresses).

It's about the transformations
on objects and how they (inter)act.

F(R(mattress)) =

H(mattress)
<_> H(F(mattress)) =
R(mattress)

¢ x ¢F R(F(H(mattress))) =
Id(mattress)

FoR=H
«—> HoF=R
RoFoH=Id

RoldoHoFoH = H




The kinds of questions asked:

Whatis RoldoHoFoH ?

Do transformations A and B “commute”?
l.e., does AoB = BoA?

What is the “order” of transformation A?
l.e., how many times do you have to
apply A before you get to Id ?

Definition of a group of transformations

Let X be a set.
Let G be a set of bijections p: X - X.
We say G is a group of transformations if:
1.If pand q arein G then sois poq.
G is “closed” under composition.
2. The ‘do-nothing’ bijection Id is in G.
3. If pisin G then so is its inverse, p~1.

G is “closed” under inverses.

Example: Rotations of a rectangular mattress

X = set of all physical points of the mattress
G = { Id, Rotate, Flip, Head-to-toe }
Check the 3 conditions:
1.If pand q arein G then sois poq. 4
2. The ‘do-nothing’ bijection Id is in G. v

3. If pisin G then so is its inverse, p~1. v




Example: Symmetries of a directed cycle

X = labelings of the
vertices by 1,2,3,4

O O w-=
G = permutations
@ @ of the labels which
don’t change the graph

\-/ IGl= 4

G = { Id, Rotgo, Rotlso, R°t27o }

Example: Symmetries of a directed cycle

X = labelings of the
vertices by 1,2,3,4

. IX] = 24

G = permutations
. of the labels which
don’t change the graph

IGl = 4

G = { Id, Rotgo, Rotlso, R°t27o }

Example: Symmetries of a directed cycle
X = labelings of directed 4-cycle
G = { Id, Rot,,, Rot;5, Rot,;, }
Check the 3 conditions:
l.Ifpand qarein Gthensois poq.
2. The ‘do-nothing’ bijection Id is in G. 4
3. If pis in G then so is its inverse, p~1. v

“Cyclic group of size 4”




Example: Symmetries of undirected n-cycle

X = labelings of the
vertices by 1,2, ..., n

[X| = n!

permutations
of the labels which
don’t change the graph

|G| = 2n

Example: Symmetries of undirected n-cycle

X = labelings of the

vertices by 1,2, ..., n
[X| = n!

permutations

of the labels which
don’t change the graph

|G| = 2n

+ one clockwise twist

Example: Symmetries of undirected n-cycle

labelings of the

vertices by 1,2, ..., n
n!

permutations

of the labels which
don’t change the graph

|G| = 2n

+ one clockwise twist =




Example: Symmetries of undirected n-cycle

X = labelings of the
vertices by 1,2, ..., n

[X| = n!

G = permutations
of the labels which
don’t change the graph

|G| = 2n
G ={Id, n-1 ‘rotations’, n ‘reflections’ }

“Dihedral group of size 2n”

Example: “All permutations”

G = all permutations of X

e.g., for n = 4, a typical element of G is:

“Symmetric group, Sym(n)”

More groups of transformations

Motions of 3D space: translations + rotations
(preserve laws of Newtonian mechanics)

Translations of 2D space by an integer amount
horizontally and an integer amount vertically

Rotations which preserve an
old-school soccer ball.

IG| = 60
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Group theory is not so much
about objects (like mattresses).

It's about the transformations
on objects and how they (inter)act.

FoR=H
HoF=R
RoFoH=Id

RoldoHoFoH = H

There is no mattress.

The laws of mattress rotation

G={Id R F,H}

Id old=Id
Id o R=R
Ido F=F
ldo H=H
Rold=R
Ro R=1d
Ro F=H
RoH=F
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The laws of the dihedral group of size 10

G —
{1d, ry, ry, r3, 1y,
fi, fy, f5, f4, f5 3

Let’s define an abstract group.

Let G be a set.

Let o be a “binary operation” on G;

think of it as defining a “multiplication table”.

E.g.,,ifG={a, b, c } then...
... is a binary operation.

This means that coa = b.

Definition of an (abstract) group

We say G is a “group under operation o” if:
1. Operation o is associative:
i.e., ao(boc) =(aob)oc Va,b,ceG
2. There exists an element eeG
(called the “identity element”) such that
aoce=a, eca=a VaeG
3. For each a€G there is an element a~1eG
(called the “inverse of a”) such that

acal=¢e, aloa=e
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Examples of (abstract) groups

Any group of transformations is a group.

(Only need to check that composition of functions is associative.)

E.g., the ‘mattress group’ (AKA Klein 4-group)

identity element is Id
R-1=R
F-1=F
H-1=H

Examples of (abstract) groups

Any group of transformations is a group.
Z (the integers) is a group under operation +

Check:
0. + really is a binary operation on Z
1. + is associative: a+(b+c) = (a+b)+c
2. “e”is0: a+t0=a, O+a=a
3. “a1”is —-a: a+(-a)=0, (-a)+a =0

Examples of (abstract) groups

Any group of transformations is a group.

Z (the integers) is a group under operation +
R (the reals) is a group under operation +
R+ (the positive reals) is a group under x

R\ {0} is a group under X

Z,, (the integers mod n) is a group under +
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NONEXAMPLES of groups

G = {all odd integers}, operation +
+ is not a binary operation on G!

Z, operation —
— is not associative!

Z \ {0}, operation x

1 is the only possible identity element;
but then most elements don’t have inverses!

Abstract algebra on groups

Theorem 1:
If (G,0) is a group, identity element is unique.

Proof:
Suppose f and g are both identity elements.
Since g is identity, fog =f.
Since f is identity, fog = g.
Therefore f = g.

Abstract algebra on groups

Theorem 2:
In any group (G, ©), inverses are unique.

Proof:

Given a€G, suppose b, c are both inverses of a.

Let e be the identity element.
By assumption, acb = e and coa = e.
Now: c = coe =co(aob)

= (coa)ob
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Abstract algebra on groups

Theorem 3:
For all a in group G we have (a1)-! = a.

Theorem 4:
For a,beG we have (aob)-1 = b-loa-1,

Theorem 5:
In group (G, o), it doesn’t matter how you
put parentheses in an expression like
2;0a;0a30" * *0ay
(“generalized associativity”).

Notation

In abstract groups, it’s tiring to always write o.
So we often write ab rather than aob.

Sometimes write 1 instead of e for the identity.

For neN+*, write a" instead of aaa---a (n times).
Also a—"instead of a—la—!--a~1, and a® means 1.

Then alak = al*k holds for all j,keZ.

Algebra practice

Problem: In the mattress group {1, R, F, H},
simplify the element R2 (H3 R-1)-1

One (slightly roundabout) Solution:

H3=HH?=H1 = H, so we reach RZ(HR-1)-1,

(HR-1)-1 = (R-1)-1H-1 = R H, so we get R2 R H.

ButR2=1,sowegetl1 RH=RH=F.

Moral: the usual rules of multiplication, except...
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Commutativity?

In a group we do NOT NECESSARILY have

aob=boa

Actually, in the mattress group we do have
this for all elements. E.g., RF = FR (=H).

Definition:
“a,beG commute” means ab = ba.

“G is commutative” means all pairs commute.

In group theory, “commutative groups”
are usually called abelian groups.

Niels Henrik Abel (1802—1829)
Norwegian

Died at 26 of tuberculosis ®
Age 22: proved there is

no quintic formula.

Evariste Galois (1811—-1832)
French

Died at 20 in a duel ®

One of the main inventors
of group theory.
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Some abelian groups:
“Mattress group” (“Klein 4-group”)

Symms of a directed cycle (“cyclic group”)
(R, +)

Some nonabelian groups:

Symms of an undirected cycle (“dihedral group”)
Motions of 3D space

Sym(n) (“symmetric group on n elements”)

Another fun group:
Quaternion group

-1, i, -0, j,—j, k, =k}

Multiplication 1 is the identity
defined by: (-1)2=1, (-l)a=a(-1)=-a
2=j2=k2=-1
ij =k, ji =-k
k=i, kji=-i
ki=j, ik=-j

Exercise: valid def. of a (nonabelian) group.

Application to computer graphics

“Quaternions”: expressions like
3.2 + 1.4i —.5j +1.1k
which generalize complex numbers (C).

Suppose we store points (x,y,z) in 3D space
as quaternions xi + yj + zk.

To rotate point p an angle of 6 around
an axis defined by unit vector (u,v,w), let
q = €os(6/2) + sin(8/2)u i + sin(6/2)v j + sin(6/2)w k.

Then the rotated point is gpg~1.
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Isomorphism

Here's a group: V = { 00, 01, 10, 11 }
® (bitwise XOR) is the operation

There’s something familiar about this group...

\ same The mattress
after
renaming:
00eld
0leR
10eF
1leH

Isomorphism

Groups (G,o) and (H,e) are “isomorphic”
if there is a way to rename elements so that
they have the same multiplication table.

Fundamentally,
they’re the “same” abstract group.

Isomorphism and orders

Obviously, if G and H are isomorphic
we must have |G| = |H]|.

|G| is called the order of G.

E.g.: Let C, be the group of transformations
preserving the directed 4-cycle.

|Csl = 4

Q: Is C, isomorphic to the mattress group V ?
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Isomorphism and orders

Q: Is C, isomorphic to the mattress group V ?

A: No! @@

a2 = 1 for every element aeV.

But in C;, Rotgy? = Rot,;0? # Rotig0°2 = Id?

Motivates studying powers of elements.

Order of a group element

Let G be a finite group. Let aeG.

Look at 1, a, a2, a3, ... till you get some repeat.

Say ak = al for some k > |.

Multiply this equation by a=i to get ak-i = 1.

So the first repeat is always 1.

Definition: The order of a, denoted |a|, is the
smallest m = 1 such that a™ = 1.

Note that a, a2, a3, ..., am~1, am=1 all distinct.

Examples:

In mattress group (order 4),
[ld| =1, [R[=|[F|=[H|=2.

In directed-4-cycle group (order 4),
[Id] =1, |Rotig| =2, |Rotgg| = |ROty70| = 4.

In dihedral group of order 10
(symmetries of undirected 5-cycle)

[ld] = 1, |any rotation| = 5, |any reflection| = 2.




Order Theorem:
|a] always divides evenly into |G].

Xam—l‘
.

Claim: also of length m.

Because xal = xak = al = ak.

Order Theorem:
|a] always divides evenly into |G].

Xam—l‘
.

Impossible.
Multiply on right by a=1.

Order Theorem:
|a] always divides evenly into |G].

am-1y
.

’f Xam—l‘
.

G partitioned
into cycles of

size m. yam-1
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Order Theorem:
|a] always divides evenly into |G].

Corollary: If |G| = n, then a"=1 for all aeG.

Proof: Let |a| = m. Write n = mk.
Then a" = (aMk = 1k = 1.

A Group Theory Application

Check Digits

Say you have important strings of digits:

credit card numbers
EFT routing numbers
UPC numbers
money serial numbers
book ISBNs

People screw up when transcribing them.
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Check Digits

Most common human screwups:

single digit wrong (e.g., 6—8): 60-90%
omitting/adding digit: 10-20%
transposition (e.g., 35-53): 10-20%
other screwups: < 5%

Instead of making them n random digits,
make them n random digits + a ‘check digit’.

Check Digits

Example: Book ISBNs before 2007.

Desired id#: 136042994 7
1098765432
dOt-prod mod 11 1x10+3x9+6X8+0x7+4x6+2x5+9x4+9x3+8x2 — 4

check digit: top it off to get 0 mod 11

Pros: You can detect any single-digit or
transposition error.

Check Digits

Example: Book ISBNs before 2007.

Desired id#: 136042994 7

1098765432
dOt-prod mod T 1 1x1043x9+6x8+0x7+4x6+2x5+9x4+9x3+8x2 = 4

check digit: top it off to get 0 mod 11

Cons: Um, check digit should be 10? “Write X"!
Doesn’t scale if you want longer id#'’s.




Verhoeff Check Digit Method

Encode digits by elements of dihedral

Let o be the permutation (

Given a desired id# aga; a, - a,_1,
choose unique check digit a, satisfying group equation

enc(o%ag)) o enc(ol(a;)) oenc(o?(a,))o---oenc(ao™(a,)) = e

Pros: Detects single-digit & transposition errors.
Uses just digits 0, 1, 2, ..., 9.
Scales to any length of id#.

Verhoeff Check Digit Method
Encode digits by elements of dihedral
Let o be the permutation (

Given a desired id# aga; a, - a,_1,
choose unique check digit a, satisfying group equation

enc(0%ag))oenc(ol(a;)) oenc(o?(a,))o---oenc(o?(a,)) = e

Cons: Can't really be done by a human.

Verhoeff Check Digit Method

Encode digits by elements of dihedral grou

9

4 5
1

8

(0 3

Let o be the permutation ( i tl‘
Given a desired id# aga; a, - ap_1,

choose unique check digit a, satisfying group equation

enc(o%ag))oenc(ol(a;)) oenc(o?(a,)) o --oenc(o?(a,)) = e
Is this really a con?

What human manually checksums credit cards?
We have computers, you know.
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Verhoeff Check Digit Method

Nevertheless, it's like the Dvorak keyboard
of check digit methods. ®

German federal bank started
using it for Deutsche Marks
(with some letters?) in 1990.

Then they went and got the euro
(which uses a different scheme).

The 10 is a good denomination
for mathematicians.

Leonhard Euler on the back of the old
10 Swiss franc note.

The 10 is a good denomination
for mathematicians.

PR < | do not know
19 o Q)= how this works.

Cahit Arf and an equation in the group Z,
starring on the back of a Turkish 10 lira.




Definitions:

Study Guide  Groups ,
Commutative/abelian
Isomorphism
Order

Groups:
Klein 4-, cyclic, dihedral,
symmetric, quaternions

Doing:
Checking for groupness
Computations in groups

Theorem/proof:
Order Theorem
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