15-251: Great Theoretical Ideas in Computer Science

 Fall 2018, Lecture 23
Fields and Polynomials

Find out about the wonderful world of $\mathbb{F}_{2 k}$ where two equals zero, plus is minus, and squaring is a linear operator!

- Rich Schroeppel

Fields

Informally, it's a number system where you can add, subtract, multiply, and divide (by nonzero).

Examples:
Real numbers
Rational numbers
Complex numbers
Integers mod prime

\mathbb{R}

NON-examples: Integers \mathbb{Z}
division??
Positive reals \mathbb{R}^{+}subtraction??

Field - formal definition

A field is a set F with two binary operations, called + and •
($\mathrm{F},+$) an abelian group, with identity element called 0
($\mathrm{F} \backslash\{0\}, \bullet$) an abelian group, identity element called 1

Distributive Law holds:

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

Example:

$$
\mathbb{F}_{3}=\mathrm{Z}_{3}
$$

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

-	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Finite fields

Some familiar infinite fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
Finite fields we know: Z_{p} aka \mathbb{F}_{p}, for p a prime Is there a field with 2 elements? Yes Is there a field with 3 elements? Yes Is there a field with 4 elements? Yes

	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\bullet	0	1	a	b
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	$\mathbf{0}$	$\mathbf{1}$	\mathbf{a}	\mathbf{b}
\mathbf{a}	$\mathbf{0}$	\mathbf{a}	\mathbf{b}	$\mathbf{1}$
\mathbf{b}	$\mathbf{0}$	\mathbf{b}	$\mathbf{1}$	\mathbf{a}

Finite fields

Is there a field with 2 elements? Yes Is there a field with 3 elements? Yes Is there a field with 4 elements? Yes Is there a field with 5 elements? Yes Is there a field with 6 elements? No Is there a field with 7 elements? Yes Is there a field with 8 elements? Yes Is there a field with 9 elements? Yes Is there a field with 10 elements? No

Finite fields

Theorem:
There is a field with q elements if and only if q is a power of a prime.

Up to isomorphism, it is unique.
l.e., all fields with q elements have the same addition and multiplication tables, after renaming elements.

This field is denoted \mathbb{F}_{q}.

Finite fields

Question:
If q is a prime power but not just a prime, what are the addition and multiplication tables of \mathbb{F}_{q} ?

Answer:
It's a bit hard to describe.
We'll see it later, but for 251's purposes, you only need to know about prime q.

Polynomials

Polynomials

Informally, a polynomial is an expression that looks like this:
$6 x^{3}-2.3 x^{2}+5 x+4.1$

x is a symbol, called the variable
the 'numbers' standing next to powers of x are called the coefficients

Polynomials

Informally, a polynomial is an expression that looks like this:

$$
6 x^{3}-2.3 x^{2}+5 x+4.1
$$

$\in \mathbb{R}[X]$

Actually, coefficients can come from any field.
Can allow multiple variables; we won't in this lecture.
The set of polynomials with variable x and coefficients from field F is denoted with $F[\mathbf{x}]$.

Polynomials - formal definition

Let F be a field and let x be a variable symbol.
$F[x]$ is the set of polynomials over F, defined to be expressions of the form
$C_{d} X^{d}+C_{d-1} X^{d-1}+\cdots+C_{2} X^{2}+C_{1} X+C_{0}$ where each c_{i} is in F, and $c_{d} \neq 0$.

We call d the degree of the polynomial.
Also, the expression 0 is a polynomial.
(By convention, we call its degree $-\infty$.)

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in $\mathbb{F}_{11}[x]$:

$$
\begin{aligned}
\mathrm{P}(\mathrm{x}) & =\mathrm{x}^{2}+5 \mathrm{x}-1 \\
\mathrm{Q}(\mathrm{x}) & =3 \mathrm{x}^{3}+10 \mathrm{x} \\
\mathrm{P}(\mathrm{x})+\mathrm{Q}(\mathrm{x}) & =3 \mathrm{x}^{3}+\mathrm{x}^{2}+15 \mathrm{x}-1 \\
& =3 \mathrm{x}^{3}+\mathrm{x}^{2}+4 \mathrm{x}-1 \\
& =3 \mathrm{x}^{3}+\mathrm{x}^{2}+4 \mathrm{x}+10
\end{aligned}
$$

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in $\mathbb{F}_{11}[x]$:

$$
\begin{aligned}
& P(x)=x^{2}+5 x-1 \\
& Q(x)=3 x^{3}+10 x \\
P(x) \cdot Q(x)= & \left(x^{2}+5 x-1\right)\left(3 x^{3}+10 x\right) \\
= & 3 x^{5}+15 x^{4}+7 x^{3}+50 x^{2}-10 x \\
= & 3 x^{5}+4 x^{4}+7 x^{3}+6 x^{2}+x
\end{aligned}
$$

Adding and multiplying polynomials

Polynomial addition is associative and commutative.
$0+P(x)=P(x)+0=P(x)$.
$P(x)+(-P(x))=0$.
So ($\mathrm{F}[\mathrm{x}],+$) is an abelian group!

Polynomial multiplication is associative and commutative.
$1 \cdot P(x)=P(x) \cdot 1=P(x)$.
Multiplication distributes over addition:

$$
P(x) \cdot(Q(x)+R(x))=P(x) \cdot Q(x)+P(x) \cdot R(x)
$$

If $\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})$ were always a polynomial, then $\mathrm{F}[\mathrm{x}]$ would be a field! Alas...

Dividing polynomials?

$\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})$ is not necessarily a polynomial.
So $F[x]$ is not quite a field.
(It's just a "commutative ring with identity".)

Same with \mathbb{Z}, the integers: it has everything except division.

Actually, there are many analogies between $F[x]$ and \mathbb{Z}.

Dividing polynomials?

\mathbb{Z} has the concept of "division with remainder":
Given $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$, can write

$$
a=q \cdot b+r
$$

where r is "smaller than" b.

F[x] has the same concept:
Given $A(x), B(x) \in F[x], B(x) \neq 0$, can write $A(x)=Q(x) \cdot B(x)+R(x)$, where $\operatorname{deg}(\mathrm{R}(\mathrm{x}))<\operatorname{deg}(\mathrm{B}(\mathrm{x}))$.
"Division with remainder" for polynomials
Example: Divide $6 x^{4}+8 x+1$ by $2 x^{2}+4$ in $\mathbb{F}_{11}[x]$

$$
3 x^{2}+5
$$

$2 x ^ { 2 } + 4 \longdiv { 6 x ^ { 4 } + 8 x + 1 }$
$-6 x^{4}+x^{2}$
Check:

$$
\begin{gathered}
6 x^{4}+8 x+1 \\
=\left(3 x^{2}+5\right)\left(2 x^{2}+4\right)+(8 x+3) \\
\left(\text { in } \mathbb{F}_{11}[x]\right)
\end{gathered}
$$

$8 x+3$

Integers \mathbb{Z}

"size" = abs. value
"division":

$$
a=q b+r, \quad|r|<|b|
$$

can use Euclid's Algorithm to find GCDs
p is "prime":
no nontrivial divisors
$\mathbb{Z} \bmod p:$
a field if p is prime

Polynomials F[x]

"size" = degree
"division":
$A(x)=Q(x) B(x)+R(x)$, $\operatorname{deg}(R)<\operatorname{deg}(B)$
can use Euclid's Algorithm to find GCDs
$P(x)$ is "irreducible": no nontrivial divisors
$F[x] \bmod P(x)$:
a field if $P(x)$ is irreducible (with $|F|^{\operatorname{deg}(P)}$ elements)

Enough algebraic theory.

 Let's play with polynomials!
Evaluating polynomials

Given a polynomial $P(x) \in F[x]$, $P(a)$ means its evaluation at element a.

$$
\begin{aligned}
& \text { E.g., if } P(x)=x^{2}+3 x+5 \text { in } \mathbb{F}_{11}[x], \\
& P(6)=6^{2}+3 \cdot 6+5=36+18+5=59=4 \\
& P(4)=4^{2}+3 \cdot 4+5=16+12+5=33=0
\end{aligned}
$$

Definition: r is a root of $P(x)$ if $P(r)=0$.

Polynomial roots

Theorem:
Let $P(x) \in F[x]$ have degree 1 .
Then $P(x)$ has exactly 1 root.

Proof:
Write $P(x)=c x+d \quad($ where $c \neq 0)$.
Then $P(r)=0 \Leftrightarrow c r+d=0$

$$
\begin{aligned}
\Leftrightarrow & c r & =-d \\
\Leftrightarrow & r & =-d / c .
\end{aligned}
$$

Polynomial roots

Theorem:
Let $P(x) \in F[x]$ have degree 2 .
Then $\mathrm{P}(\mathrm{x})$ has... how many roots??
E.g.: $\quad x^{2}+1 \ldots$
\# of roots over $\mathbb{F}_{2}[x]$: 1 (namely, 1)
\# of roots over $\mathbb{F}_{3}[x]$: 0
\# of roots over $\mathbb{F}_{5}[x]$: 2 (namely, 2 and 3)
\# of roots over $\mathbb{R}[x]$: 0
\# of roots over $\mathbb{C}[x]$: 2 (namely, i and -i)

The single most important theorem about polynomials over fields:

A nonzero degree-d polynomial has at most d roots.

Theorem: Over any field, a nonzero degree-d

 polynomial has at most d roots.
Proof by induction on $d \in \mathbb{N}$:

Base case: If $\mathrm{P}(\mathrm{x})$ is degree- 0 then $\mathrm{P}(\mathrm{x})=$ a for some $\mathrm{a} \neq 0$. This has 0 roots.
Induction:
Assume true for $\mathrm{d} \geq 0$. Let $\mathrm{P}(\mathrm{x})$ have degree $\mathrm{d}+1$.
If $\mathrm{P}(\mathrm{x})$ has 0 roots: we're done! Else let b be a root.
Divide with remainder: $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})(\mathrm{x}-\mathrm{b})+\mathrm{R}(\mathrm{x}) .(*)$
$\operatorname{deg}(R)<\operatorname{deg}(x-b)=1$, so $R(x)$ is a constant. Say $R(x)=r$.
Plug $x=b$ into $(*): 0=P(b)=Q(b)(b-b)+r=0+r=r$.
So $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})(\mathrm{x}-\mathrm{b})$. Hence $\operatorname{deg}(\mathrm{Q})=\mathrm{d} . \quad \therefore \mathrm{Q}$ has $\leq \mathrm{d}$ roots.
$\therefore \mathrm{P}(\mathrm{x})$ has $\leq \mathrm{d}+1$ roots, completing the induction.

Theorem: Over any field, a nonzero degree-d polynomial has at most d roots.

Reminder:
This is only true over a field.
E.g., consider $P(x)=3 x$ over Z_{6}.

It has degree 1, but 3 roots: 0,2 , and 4.

Interpolation

Say you're given a bunch of "data points"

a_{1} Can you find a (low-degree) polynomial which "fits the data"?

Interpolation

Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).

Theorem:
There is exactly one polynomial $\mathrm{P}(\mathrm{x})$ of degree at most d such that $P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.
E.g., thru 2 points there is a unique linear polynomial.

Interpolation

There are two things to prove.

1. There is at least one polynomial of degree \leq d passing through all d+1 data points.
2. There is at most one polynomial of degree \leq d passing through all d+1 data points.

Let's prove \#2 first.

Interpolation

Theorem:
Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$ from a field F be given (with all $\mathrm{a}_{i}^{\prime} \mathrm{s}$ distinct). Then there is at most one polynomial $P(x)$ of degree at most d with $P\left(a_{i}\right)=b_{i}$ for all i.

Proof: Suppose $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ both do the trick.
Let $R(x)=P(x)-Q(x)$.
Since $\operatorname{deg}(P), \operatorname{deg}(Q) \leq d$ we must have $\operatorname{deg}(R) \leq d$.
But $R\left(a_{i}\right)=b_{i}-b_{i}=0$ for all $i=1 \ldots d+1$.
$\therefore \mathrm{R}(\mathrm{x})$ is the 0 polynomial; i.e., $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})$.

Interpolation

Now let's prove the other part, that there is at least one polynomial.

Theorem:
Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$ from a field F be given (with all a_{i} ' s distinct).
Then there exists a polynomial $P(x)$ of degree at most d with $P\left(a_{i}\right)=b_{i}$ for all i.

Interpolation

The method for constructing the polynomial is called Lagrange Interpolation.

Discovered in 1779 by Edward Waring.

Rediscovered in 1795 by J.-L. Lagrange.

Lagrange Interpolation

$$
\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3} \\
\cdots & \cdots \\
a_{d} & b_{d} \\
a_{d+1} & b_{d+1}
\end{array}
$$

Want $P(x)$
(with degree $\leq \mathrm{d}$) such that $P\left(a_{i}\right)=b_{i} \forall i$.

Lagrange Interpolation

a_{1}	1
a_{2}	0
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Can we do this special case?

Promise: once we solve this special case, the general case is very easy.

Lagrange Interpolation

a_{1}	1	
a_{2}	0	Just divide $P(x)$
a_{3}	0	by this number.
\cdots	\cdots	
a_{d}	0	
a_{d+1}	0	
$\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)$		
eis d.		
$=P\left(a_{3}\right)=\cdots=P\left(a_{d+1}\right)=0$.		
$=\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{d+1}\right)$.		

Lagrange Interpolation

Numerator is a deg. d polynomial

Denominator is a nonzero field element

0
0
0
0
.

$$
1
$$

1

$$
S_{1}(x)=\frac{\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{d+1}\right)}
$$

Call this the selector polynomial for a_{1}.

Lagrange Interpolation

a_{1}	0
a_{2}	1
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Great! But what about this data?

$$
S_{2}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{d+1}\right)}
$$

Lagrange Interpolation

a_{1}	0
a_{2}	0
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	1

Great! But what about this data?

$$
S_{d+1}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{d}\right)}{\left(a_{d+1}-a_{1}\right)\left(a_{d+1}-a_{2}\right) \cdots\left(a_{d+1}-a_{d}\right)}
$$

Lagrange Interpolation

$$
\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3} \\
\cdots & \cdots \\
a_{d} & b_{d} \\
a_{d+1} & b_{d+1}
\end{array}
$$

Great! But what about this data?
$\mathrm{P}(\mathrm{x})=\mathrm{b}_{1} \cdot \mathrm{~S}_{1}(\mathrm{x})+\mathrm{b}_{2} \cdot \mathrm{~S}_{2}(\mathrm{x})+\cdots+\mathrm{b}_{\mathrm{d}+1} \cdot \mathrm{~S}_{\mathrm{d}+1}(\mathrm{x})$

Lagrange Interpolation - example

Over \mathbb{F}_{11}, find a polynomial P of degree ≤ 2 such that $P(5)=1, P(6)=2, P(7)=9$.

$$
\begin{aligned}
\mathrm{S}_{5}(x) & =6(x-6)(x-7) \quad \frac{1}{(5-6)(5-7)} \\
\mathrm{S}_{6}(x) & =-(x-5)(x-7) \\
\mathrm{S}_{7}(x) & =6(x-5)(x-6) \\
P(x) & =1 \mathrm{~S}_{5}(x)+2 \mathrm{~S}_{6}(x)+9 \mathrm{~S}_{7}(x) \\
& =6\left(x^{2}-13 x+42\right)-2\left(x^{2}-12 x+35\right)+54\left(x^{2}-11 x+30\right) \\
& =3 x^{2}+x+9
\end{aligned}
$$

Recall: Interpolation

Let pairs $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{d+1}, b_{d+1}\right)$
from a field F be given (with all a_{i} 's distinct).

Theorem:
There is exactly one polynomial $\mathrm{P}(\mathrm{x})$
of degree at most d such that
$P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.

Representing Polynomials

Let $P(x) \in F[x]$ be a degree-d polynomial.
Representing $\mathrm{P}(\mathrm{x})$ using $\mathrm{d}+1$ field elements:

1. List the $d+1$ coefficients.
2. Give P's value at d+1 different elements.

Rep 1 to Rep 2: Evaluate at $\mathrm{d}+1$ elements
Rep 2 to Rep 1: Lagrange Interpolation

Application:

Error-correcting codes

Sending messages on a noisy channel

Alice

" bit.ly/vrxUBN "

The channel may corrupt up to k symbols.
How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from \mathbb{F}_{257}
vrxUBN $\leftrightarrow \quad 118114120856678$

The channel may corrupt up to k symbols.
How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from \mathbb{F}_{257}
vrxUBN $\leftrightarrow \quad 118114120856678$

How to correct the errors?
How to even detect that there are errors?

Simpler case: "Erasures"

118114 ?? 85 ?? 78

What can you do to handle up to k erasures?

Repetition code

Have Alice repeat each symbol $\mathrm{k}+1$ times.

$$
\begin{gathered}
118114120856678 \\
\text { becomes }
\end{gathered}
$$

$\begin{array}{llllllllllllllllllllllllll}118 & 118 & 118 & 114 & 114 & 114 & 120 & 120 & 120 & 85 & 85 & 85 & 66 & 66 & 66 & 78 & 78 & 78\end{array}$ erasure channel \downarrow

If at most k erasures, Bob can figure out each symbol.

Repetition code - noisy channel

Have Alice repeat each symbol $2 k+1$ times.
118114120856678
becomes
$\begin{array}{lllllllllllllllllllllllll}118 & 118 & 118 & 114 & 114 & 114 & 120 & 120 & 120 & 85 & 85 & 85 & 66 & 66 & 66 & 78 & 78 & 78\end{array}$ noisy channel
$\begin{array}{llllllllllllllllllllllllllll}118 & 118 & 118 & 114 & 223 & 114 & 120 & 120 & 120 & 85 & 85 & 85 & 66 & 66 & 66 & 78 & 78 & 78\end{array}$

At most k corruptions: Bob can take maj. of each block.

This is pretty wasteful!

To send message of $\mathrm{d}+1$ symbols and guard against k erasures, we had to send $(d+1)(k+1)$ total symbols.

Can we do better?

This is pretty wasteful!

To send message of $d+1$ symbols and guard against k erasures, we had to send $(d+1)(k+1)$ total symbols.

To send even 1 message symbol with k erasures, need to send $k+1$ total symbols.

Maybe for $\mathrm{d}+1$ message symbols with k erasures, $d+k+1$ total symbols can suffice??

Enter polynomials

Say Alice's message is $d+1$ elements from \mathbb{F}_{257}

$$
\begin{array}{llllll}
118 & 114 & 120 & 85 & 66 & 78
\end{array}
$$

Alice thinks of it as the coefficients of a degree-d polynomial $P(x) \in \mathbb{F}_{257}[x]$
$P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78$

Now trying to send the degree-d polynomial $P(x)$.

Send it in the Values Representation!

$P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78$
Alice sends $P(x)$'s values on $d+k+1$ inputs:

$$
P(1), P(2), P(3), \ldots, P(d+k+1)
$$

This is called the Reed-Solomon encoding.

Send it in the Values Representation!

$P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78$
Alice sends $P(x)$'s values on $d+k+1$ inputs:

$$
P(1), P(2), P(3), \ldots, P(d+k+1)
$$

If there are at most k erasures, then Bob still knows P's value on d+1 points.

Bob recovers $\mathrm{P}(\mathrm{x})$ using Lagrange Interpolation!

Example

What about corruptions, not erasures?

Trickier. So let Alice now send $P(x)$'s value on $d+2 k+1$ inputs.

Assuming at most k corruptions, Bob will have at least $\mathrm{d}+\mathrm{k}+1$ 'correct' values.
$P(1), P(2)$, bogus, $P(4)$, bogus, $P(6), \ldots, P(d+2 k+1)$

Trouble: Bob does not know which values are bogus.

Corruptions under Reed-Solomon

Assuming at most k corruptions,

 Bob will have at least $\mathrm{d}+\mathrm{k}+1$ 'correct' values.$P(1), P(2)$, bogus, $P(4)$, bogus, $P(6), \ldots, P(d+2 k+1)$
$P(x)$ is a poly of degree $\leq d$ which disagrees with the received data on at most k positions.

Theorem: It is the only such polynomial.

Corruptions under Reed-Solomon

Theorem: $P(x)$ is the only polynomial of degree $\leq \mathrm{d}$ which disagrees with the data on $\leq k$ positions.
Proof:
Suppose $Q(x)$ is another such poly. $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ disagree with each other on at most $2 k$ positions.
\therefore they agree with each other on at least

$$
(d+2 k+1)-2 k=d+1 \text { positions. }
$$

$\therefore \mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})$ since they are degree $\leq \mathrm{d}$.

Corruptions under Reed-Solomon

Theorem: $P(x)$ is the only polynomial of degree $\leq \mathrm{d}$ which disagrees with the data on $\leq k$ positions.

Therefore Bob can determine $P(x)$!

Brute force algorithm:
Take each set of $\mathrm{d}+1$ out of $\mathrm{d}+2 \mathrm{k}+1$ values. Interpolate to get a polynomial $\mathrm{Q}(\mathrm{x})$ of deg $\leq \mathrm{d}$.
Check if it agrees with $\geq d+k+1$ values.

Efficient Reed-Solomon

Brute-force 'decoding' takes $2^{0(d)}$ time. ${ }^{(8)}$ Peterson 1960: a O(d33) decoding alg.

Berlekamp \& Massey, late '60s: key practical improvements

CMU's Prof. Guruswami: efficient algorithms to meaningfully correct more than k corruptions

Reed-Solomon codes are used in practice!

cUST

Definitions:

Fields, polynomials

Study Guide

Theorem/proof: Degree-d polys have at most d roots.

Algorithms:
Polynomial division with remainder
Lagrange Interpolation Error correction and detection with Reed-Solomon

