15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 23

Fields and Polynomials
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Find out about the wonderful world of [«
where two equals zero, plus is minus,
and squaring is a linear operator!

— Rich Schroeppel




Fields

Informally, it’s a number system where you can
add, subtract, multiply, and divide (by nonzero).

Examples:

NON-examples:

Real numbers

Complex numbers

R
Rational numbers )
C
Integers mod prime Z,

Integers 7 division??
Positive reals R+ subtraction??




Field - formal definition

A field is a set F with two
binary operations,

/ Example: \

called + and . F3 = Z;

(F,+) an abelian group, with
identity element called 0

(F\ {O},*) an abelian group,
identity element called 1

Distributive Law holds:
ac(b+c) = a*b + ac




Finite fields

Some familiar infinite fields: @, R, C

Finite fields we know: Z,aka Fp, for p a prime

s there a field with 2 elements? Yes
s there a field with 3 elements? Yes

s there a field with 4 elements? Yes

F4




Finite fields

nere a field with 2 elements? Yes

nere a field with 3 elements? Yes

nere a field with 4 elements? Yes

nere a field with 5 elements? Yes

nere a field with 6 elements? No

nere a field with 7 elements? Yes

nere a field with 8 elements? Yes

nere a field with 9 elements? Yes

O O O O O o o o o

nere a field with 10 elements? No




Finite fields

Theorem:
There is a field with g elements

If and only if g is a power of a prime.
Up to isomorphism, it is unique.

l.e., all fields with g elements have the
same addition and multiplication tables,
after renaming elements.

This field is denoted [Fq.




Finite fields

Question:

If g is a prime power but not just a prime,
what are the addition and multiplication
tables of [q?

Answer:
It’s a bit hard to describe.

We'll see it later, but for 251’s purposes,
you only need to know about prime q.




Polynomials




Polynomials

Informally, a polynomial is an expression
that looks like this:

ox3 — 2.3x2+5x + 4.1

;

X 1s a symbol, called the variable

the ‘numbers’ standing next to
powers of x are called the coefficients




Polynomials

Informally, a polynomial is an expression

c R\X\

that looks like this:

ox3 — 2.3x2+5x + 4.1

Actually, coefficients can come from any field.

Can allow multiple variables; we won't in this lecture.

The set of polynomials with variable x and
coefficients from field F is denoted with F[Xx].




Polynomials - formal definition

Let F be a field and let x be a variable symbol.

F[x] is the set of polynomials over F,
defined to be expressions of the form
CyX9d+ Cy_q X971 + -=- + ¢, X2 + C; X + ¢
where each ¢, isin F, and c4 # 0.
We call d the degree of the polynomial.

Also, the expression 0O is a polynomial.

(By convention, we call its degree —o0.)




Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in F11[X]:

P(x) = x?+5x -1
Q(x) = 3x3 + 10x

P(x) + Q(x) = 3x3 + x2 + 15x — 1
=3x3+x2+ 4x -1
=3x3 + x2+ 4x + 10




Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in F11[X]:

P(x) = x?+5x -1
Q(x) = 3x3 + 10x

P(x) * Q(x) = (x2 + 5x — 1)(3x3 + 10x)
= 3x° + 15x%+ 7x3 + 50x2 — 10x
= 3X> + 4x*+T7x3+ o6x%2+ X




Adding and multiplying polynomials

Polynomial addition is associative and commutative.
0 + P(x) = P(x) + 0 = P(x).
P(x) + (—P(x)) = 0.

So (F[x], +) is an abelian group!

Polynomial multiplication is associative and commutative.
1 e P(x) = P(x) * 1 = P(x).
Multiplication distributes over addition:

P(x) ¢ (Q(x) + R(x)) = P(x) ¢ Q(x) + P(x) ¢ R(x)

If P(x) / Q(x) were always a polynomial,
then F[x] would be a field! Alas...




Dividing polynomials?

P(x) / Q(Xx) is not necessarily a polynomial.

So F[x] is not quite a field.
(It’'s just a “commutative ring with identity”.)

Same with Z, the integers:
it has everything except division.

Actually, there are many analogies between
F[x] and Z.




Dividing polynomials?

Z has the concept of “division with remainder”:

Given a,beZ, b#0, can write
a=dqeb +r,
where r is “smaller than” b.

F[x] has the same concept:

Given A(x),B(x)eF[x], B(x)#0, can write
A(x) = Q(x)*B(x) + R(x),
where deg(R(x)) < deg(B(x)).




“Division with remainder” for polynomials

Example: Divide 6x*+8x+1 by 2x%2+4 in F11[X]

3x2+5

2x1+4| ox4+8x+1

Check:
— X4+ X2
ox4+8x+1

= (3x245)(2x2+4)+(8x+3)

—x2+4+8x+1
— —X?+9

(in F11[x])

8x+3




Integers 7/

“size” = abs. value
“division”:

a = qgb+r, |r] < |Db]

can use Euclid’s Algorithm
to find GCDs

p is “prime”;
no nontrivial divisors

Z mod p:
a field if p is prime

Polynomials F[Xx]

“size” = degree

“division”:
A(x) = Q(x)B(x)+R(x),
deg(R) < deg(B)

can use Euclid’s Algorithm
to find GCDs

P(x) is “irreducible”:
no nontrivial divisors

FIx] mod P(x):
a field if P(x) is irreducible
(with |F|de9(P) elements)




Enough algebraic theory.

Let’s play with polynomials!




Evaluating polynomials

Given a polynomial P(x) € F[x],
P(a) means its evaluation at element a.

E.g., if P(x) = x2+3x+5 in F11[Xx],
P(6) = 62+3-6+5 = 36+18+5 =59 =4
P(4) = 4°4+3-445 = 16+12+5 =33 =0

Definition: ris a root of P(x) if P(r) = O.




Polynomial roots

Theorem:

Let P(x) € F[x] have degree 1.
Then P(x) has exactly 1 root.

Proof:
Write P(x) = cx + d (where cz0).
Then P(r) =0 & cr+d=0

& cr=-—d
& r= —d/c.



Polynomial roots

Theorem:

Let P(x) € F[x] have degree 2.
Then P(x) has... how many roots??

E.g.:. X2+1...
# of roots over
# of roots over
# of roots over
# of roots over

Fo[X]:
F3[x]:
Fs[X]:

R[x] :

# of roots over C[X] :

(namely, 1)

(namely, 2 and 3)

(namely, i and —I)




The single most important theorem
about polynomials over fields:

A nonzero degree-d

polynomial has
at most d roots.




Theorem: Over any field, a nonzero degree-d
polynomial has at most d roots.

Proof by induction on deN:

Base case: If P(x) is degree-0 then P(x) = a for some a=0.
This has 0 roots.

Induction:
Assume true for d = 0. Let P(x) have degree d+1.
If P(x) has O roots: we're done! Else let b be a root.
Divide with remainder: P(x) = Q(x)(x—Db) + R(x). (*)
deg(R) < deg(x—b) = 1, so R(x) is a constant. Say R(x)=r.
Plugx = b into (*): 0 = P(b) = Q(b)(b—b)+r =0+4+r =r.
So P(x) = Q(x)(x—b). Hence deg(Q) = d. .. Q has < d roots.

.. P(x) has < d+1 roots, completing the induction.




Theorem: Over any field, a nonzero degree-d
polynomial has at most d roots.

Reminder:

This is only true over a field.

E.g., consider P(x) = 3x over Z,.

It has degree 1, but 3 roots: 0, 2, and 4.




Interpolation

Say you're given a bunch of “data points”

Can you find a (low-degree)
polynomial which “fits the data”?




Interpolation

Let pairs (a;,b;), (a,,b5), ..., (a4+1,04+1)
from a field F be given (with all a,'s distinct).

Theorem:
There is exactly one polynomial P(x)
of degree at most d such that
P(a;)) = b, foralli=1...d+1.

E.g., thru 2 points there is a unique linear polynomial.




Interpolation

There are two things to prove.

1. There is at least one polynomial of degree
< d passing through all d+1 data points.

2. There is at most one polynomial of degree
< d passing through all d+1 data points.

Let's prove #2 first.




Interpolation

Theorem:
Let pairs (a;,b;), (a,,b5), ..., (a4+1,04+1)
from a field F be given (with all a,'s distinct).
Then there is at most one polynomial P(x)
of degree at most d with P(a;) = b, for all I.

Proof: Suppose P(x) and Q(x) both do the trick.
Let R(x) = P(x)—Q(x).

Since deg(P), deg(Q) < d we must have deg(R) < d.
But R(a;) = bj—b, =0 foralli =1...d+1.

.. R(X) is the 0 polynomial; i.e., P(x)=Q(X).




Interpolation

Now let's prove the other part,
that there is at least one polynomial.

Theorem:
Let pairs (a;,b;), (a,,b,), ..., (a4+1,04+1)
from a field F be given (with all a,'s distinct).
Then there exists a polynomial P(x) of
degree at most d with P(a;) = b, for all I.




Interpolation

The method for constructing the polynomial
Is called Lagrange Interpolation.

Discovered in 1779
by Edward Waring.

Rediscovered in 1795
by J.-L. Lagrange.




Lagrange Interpolation

dg+1 Dys1

Want P(x)
(with degree < d)

such that P(a;) = b, Vi.




Lagrange Interpolation

0
dd+1 0
Can we do this special case?

Promise: once we solve this special case,
the general case is very easy.




Lagrange Interpolation

Just divide P(x)
by this number.

0
dd+1 0

ldea #1: P(x) = (x—a,)(x—a3) " (Xx—ay;1)
Degree isd. v
P(a,) = P(ag) =---=P(ag;1) =0. v

P(a,) = (a;—ay)(a;—asz)(a;—ay.q). ?7




Lagrange Interpolation

Numerator Denominator
IS a deg. d IS @ nonzero
polynomial field element

dy
dg+1

|dea #2:
(x—az)(x—a3): - (X—adg+1)

S —
1(x) (a; —az)(a; —a3)---(a1 —ag+1)

Call this the selector polynomial for a;.




Lagrange Interpolation

0
dd+1 0

Great! But what about this data?

(x—a1)(x—a3)---(X—ad+1)
(a2 —a1)(az —a3z)---(az2 —ad+1)

S2(x) =




Lagrange Interpolation

0
dd+1 1

Great! But what about this data?

(x—a1)(x—az)---(x—ad)
(ad+1 —a1)(@d+1 —a2)---(ad+1 —aq)

Sd+1(X) =




Lagrange Interpolation

ad+1 bd+1

Great! But what about this data?

7

.

\

P(x)=Db1-S1(xX)+b2-So(x)+---+Dbg+1 - Sg+1(x)

J




Lagrange Interpolation — example

Over [, find a polynomial P of degree < 2
such that P(5) = 1, P(6) = 2, P(7) = 9.

1
(5-6)(5-7)

S5(x) =6,(x=6)(x=7)
Se(x) = — (X=5)(x=7)
S;(x) = 6,(x=5)(x—6)

P(x) = 1 Sg(x) + 2 Sg(x) + 9 S5(x)
= 6(x?2—13x+42) — 2(x?2—=12x+35) + 54(x?—11x+30)

= 3x2+x+9




Recall: Interpolation

Let pairs (a;,b;), (a,,b5), ..., (a4+1,04+1)
from a field F be given (with all a,'s distinct).

Theorem:
There is exactly one polynomial P(x)
of degree at most d such that
P(a;)) = b, foralli=1...d+1.




Representing Polynomials

Let P(x) eF[x] be a degree-d polynomial.

Representing P(x) using d+1 field elements:

1. Listthe d+1 coefficients.

2. Give P’s value at d+1 different elements.

Rep 1 to Rep 2: Evaluate at d+1 elements

Rep 2 to Rep 1: Lagrange Interpolation




Application:

Error-correcting codes




Sending messages on a noisy channel

Alice

The channel may corrupt up to k symbols.

How can Alice still get the message across?




Sending messages on a noisy channel

Let’s say messages are sequences from 257

vrxUBN < 118 114 120 85 66 /8

noisy channel

v

118 114 104 85 35 78

The channel may corrupt up to k symbols.

How can Alice still get the message across?




Sending messages on a noisy channel

Let’s say messages are sequences from 257

vrxUBN < 118 114 120 85 66 /8

noisy channel

v

118 114 104 85 35 78

How to correct the errors?

How to even detect that there are errors?




Simpler case: “Erasures”

118 114 120 85 66 /8

erasure channel

\ 4

118 114 7?72 85 77 78

What can you do to handle up to k erasures?




Repetition code

Have Alice repeat each symbol k+1 times.

118 114 120 85 66 /8

becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 /8 78 /8

erasure channel

\ 4

118 118 118 27?7 7?7 114 120 120 120 85 85 85 66 66 66 78 78 78

If at most k erasures, Bob can figure out each symbol.




Repetition code - noisy channel

Have Alice repeat each symbol 2k+1 times.

118 114 120 85 66 /8

becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 /8 78 /8

noisy channel

\ 4
118 118 118 114 223 114 120 120 120 85 85 85 66 66 66 /8 78 /8

At most k corruptions: Bob can take maj. of each block.




This Is pretty wasteful!

To send message of d+1 symbols and
guard against k erasures, we had
to send (d+1)(k+1) total symbols.

Can we do better?




This Is pretty wasteful!

To send message of d+1 symbols and
guard against k erasures, we had
to send (d+1)(k+1) total symbols.

To send even 1 message symbol with
k erasures, need to send k+1 total symbols.

Maybe for d+1 message symbols with k erasures,
d+k+1 total symbols can suffice??




Enter polynomials

Say Alice’s message is d+1 elements from [F257

118 114 120 85 66 /8

Alice thinks of it as the coefficients of a
degree-d polynomial P(x) € [F>57[x]

P(x) = 118x> + 114x* + 120x3 + 85x%2 + 66x + 78

Now trying to send the degree-d polynomial P(x).




Send it in the Values Representation!

P(x) =118x> + 114x* + 120x3 + 85x2 + 66x + 78

Alice sends P(x)’'s values on d+k+1 inputs:
P(1), P(2), P(3), ..., P(d+k+1)

This Is called the Reed-Solomon encoding.




Send it in the Values Representation!

P(x) =118x> + 114x* + 120x3 + 85x2 + 66x + 78

Alice sends P(x)’'s values on d+k+1 inputs:
P(1), P(2), P(3), ..., P(d+k+1)

If there are at most k erasures, then
Bob still knows P’s value on d+1 points.

Bob recovers P(x) using Lagrange Interpolation!




Example



What about corruptions, not erasures?

Trickier. So let Alice now send P(x)’'s value on
d + 2k + 1 inputs.

Assuming at most k corruptions,
Bob will have at least d+k+1 ‘correct’ values.

P(1), P(2), bogus, P(4), bogus, P(6), ..., P(d+2k+1)

Trouble: Bob does not know which
values are boqus.




Corruptions under Reed-Solomon

Assuming at most k corruptions,
Bob will have at least d+k+1 ‘correct’ values.

P(1), P(2), bogus, P(4), bogus, P(6), ..., P(d+2k+1)
P(x) is a poly of degree < d

which disagrees with the received
data on at most k positions.

Theorem: Itis the only such polynomial.




Corruptions under Reed-Solomon

Theorem: P(x) iIs the only polynomial of
degree < d which disagrees with

the data on < k positions.
Proof:

Suppose Q(x) is another such poly.

P(x) and Q(x) disagree with each other
on at most 2k positions.

.. they agree with each other on at least
(d+2k+1)—2k = d+1 positions.

. P(x) = Q(x) since they are degree < d.




Corruptions under Reed-Solomon

Theorem: P(x) iIs the only polynomial of
degree < d which disagrees with
the data on < k positions.

Therefore Bob can determine P(x)!

Brute force algorithm:
Take each set of d+1 out of d+2k+1 values.
Interpolate to get a polynomial Q(x) of deg < d.
Check if it agrees with = d+k+1 values.




Efficient Reed-Solomon

Brute-force ‘decoding’ takes 2°d time. ®

i" Peterson 1960: a O(d3) decoding alg.

e -7‘.9'*

Berlekamp & Massey, late ‘60s:
key practical improvements

....b CMU'’s Prof. Guruswami:

@
- - g‘g efficient algorithms to meaningfully
! correct more than k corruptions




Reed—Solomon codes are used in practice!
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Study Guide

Definitions:
Fields, polynomials

Theorem/proof:

Degree-d polys have
at most d roots.

Algorithms:

Polynomial division
with remainder

Lagrange Interpolation

Error correction and
detection with
Reed—Solomon




