

The plan	The plan
Classical computers and classical theory of computation	l computers and classical theory of computation
Quantum physics (what the fuss is all about)	m physics (what the fuss is all about)
Quantum computation (practical, scientific, and philosophical perspectives)	n computation al, scientific, and philosophical perspectives)

Theory of computation

Mathematical model of a computer:

(Physical) Church-Turing Thesis

The plan	
Classical computers and classical theory of computation	'n
Quantum physics (what the fuss is all about)	
Quantum computation (practical, scientific, and philosophical perspectives)	

One slide course on physics

Physics

General Theory of Relativity

Quantum Physics

2 interesting aspects of quantum physics

I. Having multiple states "simultaneously"

e.g.: electrons can have states spin "up" or spin "down": $|up\rangle$ or $|down\rangle$

In reality, they can be in a _____ of two states.

2. Measurement

Quantum property is very sensitive/fragile !

If you measure it (interfere with it), it "collapses".

So you either see $|up\rangle$ or $|down\rangle$.

Probabilistic states and evolution vs Quantum states and evolution

Probabilistic states

Suppose an object can have n possible states:

 $|1\rangle, |2\rangle, \cdots, |n\rangle$

At each time step, the state can change probabilistically.

What happens if we start at state $\left. \left| 1 \right\rangle$ and evolve?

Initial state:

 $\begin{array}{c|c}
|1\rangle \\
|2\rangle \\
0\\
|3\rangle \\
|n\rangle \\
0\\
\vdots\\
0
\end{array}$

Probabilistic states

Suppose an object can have n possible states:

$$|1\rangle, |2\rangle, \cdots, |n\rangle$$

At each time step, the state can change probabilistically.

What happens if we start at state $|1\rangle$ and evolve?

After one time step:

Probabilistic states

Evolution of probabilistic states

Transition Matrix

Any matrix that maps probabilistic states to probabilistic states.

We won't restrict ourselves to just one transition matrix.

$$\pi_0 \xrightarrow{K_1} \pi_1 \xrightarrow{K_2} \pi_2 \xrightarrow{K_3} \cdots$$

Quantum states

Evolution of quantum states

Unitary Matrix

Any matrix that maps quantum states to quantum states.

We won't restrict ourselves to just one unitary matrix.

 $\psi_0 \xrightarrow{U_1} \psi_1 \xrightarrow{U_2} \psi_2 \xrightarrow{U_3} \cdots$

Quantum states

Measuring quantum states

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \alpha_1 |1\rangle + \alpha_2 |2\rangle + \dots + \alpha_n |n\rangle$$

-	

Probabilistic states vs Quantum states
Classical Probability To find the probability of an event: add the probabilities of every possible way it can happen

Probabilistic states vs Quantum states

A final remark

Quantum states are an **upgrade** to:

2-norm (Euclidean norm) and algebraically closed fields.

Nature seems to be choosing the mathematically more elegant option.

The plan
Classical computers and classical theory of computation
Quantum physics (what the fuss is all about)
Quantum computation (practical, scientific, and philosophical perspectives)

Quantum Computation:

Richard Feynman (1918 - 1988) It would be super nice to be able to simulate quantum systems.

With a classical computer this is extremely inefficient.

Why not view the quantum particles as a computer simulating themselves?

Why not do computation using quantum particles/physics?

Representing data/information
An electron can be in "spin up" or "spin down" state.
$ \mathrm{up} angle$ or $ \mathrm{down} angle$ ~ $ 0 angle$ or $ 1 angle$
2 gubits:

Representing data/information
An electron can be in "spin up" or "spin down" state.
$ \mathrm{up} angle$ or $ \mathrm{down} angle$ ~ $ 0 angle$ or $ 1 angle$
3 qubits:

Practical perspective

What useful things can we do with a quantum computer?

We can factor large numbers efficiently!

203703597633448608626844568840937816105146839366593625063614044935438129976333670618339 844568840937816105146839366593625063614044935438129976333670618339928374928729109198341 992834719747982982750348795478978952789024138794327890432736783553789507821378582549871

So what?

Can we solve every problem efficiently?

Practical perspective

What useful things can we do with a quantum computer?

Can simulate quantum systems efficiently!

Better understand behavior of atoms and moleculues.

Applications:

- nanotechnology
- microbiology
- pharmaceuticals
- superconductors.

•••

Scientific perspective

To know the limits of efficient computation:

Incorporate actual facts about physics.

Scientific perspective

(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved **efficiently** by a physical device, can be solved **efficiently** by a TM.

Strong version doesn't seem to be true!

Philosophical perspective

Is the universe deterministic ?

How does nature keep track of all the numbers ?

1000 qubits $\rightarrow 2^{1000}$ amplitudes

How should we interpret quantum measurement? (the measurement problem)

Does quantum physics have anything to say about the human mind?

Quantum AI?

A whole new exciting world of computation.

Potential to fundamentally change how we view computation.