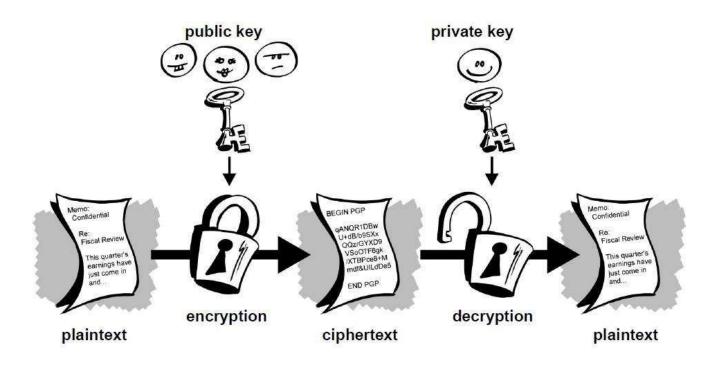
I5-251 Great Theoretical Ideas in Computer Science

Lecture 25: Cryptography



What is cryptography about?

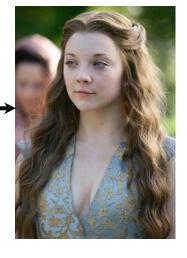
Adversary Eavesdropper

"I will cut his throat"

"I will cut his throat"

What is cryptography about?

"loru23n8uladjkfb!#@"



"I will cut his throat" encryption

"loru23n8uladjkfb!#@"

"loru23n8uladjkfb!#@"

decryption

"I will cut his throat"

What is cryptography about?

Study of protocols that avoid the bad affects of adversaries.

- Secure online voting schemes?
- Digital signatures.
- Computation on encrypted data?
- Zero-Knowledge Interactive Proofs: Can I convince you that I have proved P=NP without giving you any information about the proof?

•

Reasons to like cryptography

Can do pretty cool and unexpected things.

Has many important applications.

Is fundamentally related to computational complexity.

In fact, comp. complexity revolutionized cryptography.

Applications of computationally hard problems.

Uses cool math (e.g. number theory).

The plan

First, we will review modular arithmetic.

Then we'll talk about private (secret) key crypto.

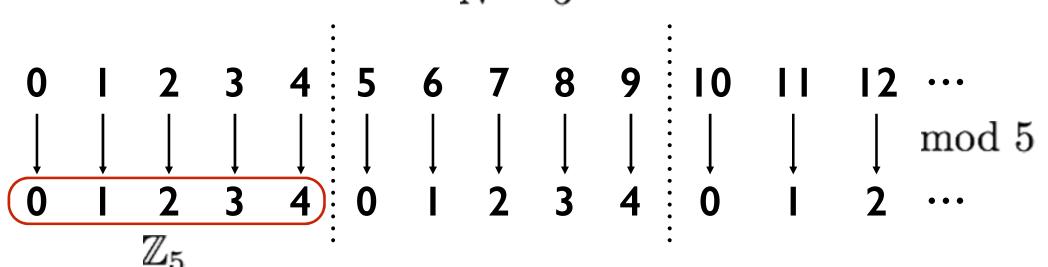
Finally, we'll talk about public key cryptography.

Review of Modular Arithmetic

$A \bmod N = \text{remainder when you divide } A \bmod N$

Example

$$N=5$$



We write $A \equiv B \mod N$ or $A \equiv_N B$ when $A \mod N = B \mod N$.

Can view the universe as $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$.

$$\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$$

behaves nicely with respect to addition

 $\mathbb{Z}_{\mathsf{s}}^*$

$$\mathbb{Z}_N^* = \{ A \in \mathbb{Z}_N : \gcd(A, N) = 1 \}$$

behaves nicely with respect to multiplication

$$\varphi(N) = |\mathbb{Z}_N^*|$$

if
$$P$$
 prime, $\varphi(P) = P - 1$

if
$$P,Q$$
 distinct primes, $\varphi(PQ)=(P-1)(Q-1)$

2 and 3 are called generators.

 $\implies A^{4k} = (A^4)^k = 1$

Euler's Theorem:

For any
$$A \in \mathbb{Z}_N^*$$
 , $A^{arphi(N)} = 1$.

Fermat's Little Theorem:

Let P be a prime. For any $A \in \mathbb{Z}_P^*$, $A^{P-1} = 1$.

IMPORTANT

When exponentiating elements $A \in \mathbb{Z}_N^*$,

can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Algorithms for Modular Arithmetic

- > addition A + B mod N
 Do regular addition. Then take mod N.
- > subtraction $A B = A + (-B) \mod N$ -B = N-B. Then do addition.
- > multiplication $A \cdot B \mod N$ Do regular multiplication. Then take mod N.
- > division $A/B = A \cdot B^{-1} \mod N$ Find B^{-1} . Then do multiplication.
- > exponentiation $A^B \mod N$

- > addition $A+B \mod N$ Do regular addition. Then take mod N.
- **> subtraction** $A B = A + (-B) \mod N$ -B = N-B. Then do addition.
- \rightarrow multiplication $A \cdot B \mod N$

Do regular multiplication. Then take mod N B^{-1} exists iff gcd(B, N) = 1.

Find B . Our modification of Euclid's Alg. computes B^{-1} given B and N.

> exponentiation

- > addition A + B mod N
 Do regular addition. Then take mod N.
- > subtraction $A B = A + (-B) \mod N$ -B = N-B. Then do addition.
- > multiplication $A \cdot B \mod N$ Do regular multiplication. Then take mod N.
- > division $A/B = A \cdot B^{-1} \mod N$ Find B^{-1} . Then do multiplication.
- > exponentiation $A^B \mod N$ repeatedly square and mod to compute powers of two then multiply those mod n as neccessary

- > addition A + B mod N
 Do regular addition. Then take mod N.
- > subtraction $A B = A + (-B) \mod N$ -B = N-B. Then do addition.
- > mult
 Do r
 What about roots and
 logarithms?
 Find
- > exponentiation $A^B \mod N$ repeatedly square and mod to compute powers of two then multiply those mod n as neccessary

Arithmetic in \mathbb{Z}

$$(B,E) \longrightarrow EXP \longrightarrow B^E$$
 too big

Two inverse functions:

$$(B^E, E) \longrightarrow ROOT_E \longrightarrow B$$
 ????

$$(B^E, B) \longrightarrow E$$
 ???

Arithmetic in \mathbb{Z}

$$(B,E) \longrightarrow EXP \longrightarrow B^E$$
 too big

Two inverse functions:

$$(B^E, E) \longrightarrow ROOT_E \longrightarrow B$$
 easy

$$(B^E, B) \longrightarrow E$$
 easy

In \mathbb{Z}

$$(B^E, E) \longrightarrow ROOT_E \longrightarrow B$$
 easy

 $(1881676371789154860897069, 3) \longrightarrow 123456789$

(do binary search and exponentiation)

$$(B^E, B) \longrightarrow E$$
 easy

(48519278097689642681155855396759336072749841943521979872827, 3)

 $\longrightarrow 123$

(keep dividing by B)

Arithmetic in
$$\mathbb{Z}_N^*$$

$$(B, E, N) \longrightarrow EXP \longrightarrow B^E \mod N$$
 easy

Two inverse functions:

$$(B^E, E, N) \longrightarrow ROOT_E \longrightarrow B$$
 ???

$$(B^E, B, N) \longrightarrow E$$
 :??

Arithmetic in \mathbb{Z}_N^*

$$(B, E, N) \longrightarrow EXP \longrightarrow B^E \mod N$$
 easy

Two inverse functions:

$$(B^E, E, N) \longrightarrow \text{ROOT}_E \longrightarrow B$$
 seems hard $(B^E, B, N) \longrightarrow \text{LOG}_B \longrightarrow E$

Question: Why do the algorithms from the setting of \mathbb{Z} do not work in \mathbb{Z}_N^* ?

Arithmetic in \mathbb{Z}_N^*

$$(B, E, N) \longrightarrow EXP \longrightarrow B^E \mod N$$
 easy

Two inverse functions:

$$(B^E, E, N) \longrightarrow \begin{array}{c} \text{ROOT}_E \longrightarrow B \\ \text{hard} \end{array}$$
 $(B^E, B, N) \longrightarrow \begin{array}{c} \text{LOG}_B \longrightarrow E \\ \text{hard} \end{array}$

One-way function: easy to compute, hard to invert. EXP seems to be one-way.

Private Key Cryptography

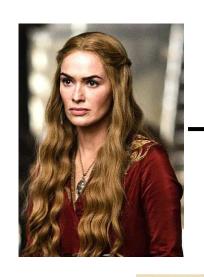
Private key cryptography

Parties must agree on a key pair beforehand.

Private key cryptography

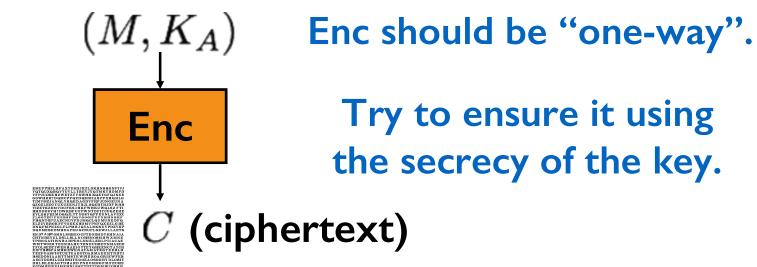
there must be a secure way of exchanging the key

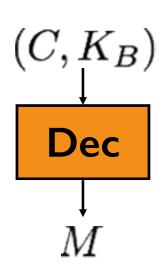
Private key cryptography



C

M (plaintext)





A note about security

Better to consider worst-case conditions.

Assume the adversary knows everything except the key(s) and the message:

Completely sees cipher text C.

Completely knows the algorithms **Enc** and **Dec**.

Caesar shift

Example: shift by 3

(similarly for capital letters)

"Dear Math, please grow up and solve your own problems."

"Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq sureohpv."

: the shift number

Easy to break.

Substitution cipher

: permutation of the alphabet

Easy to break by looking at letter frequencies.

Vigenère cipher

M ="Dear Math, please grow up and solve your own problems."

K = "helloworldhelloworldhelloworldhelloworldhell"

K[i] determines the shifting factor for M[i].

a shift by 0

b shift by I

c shift by 2

d shift by 3

• • • • • •

A series of different Caesar ciphers

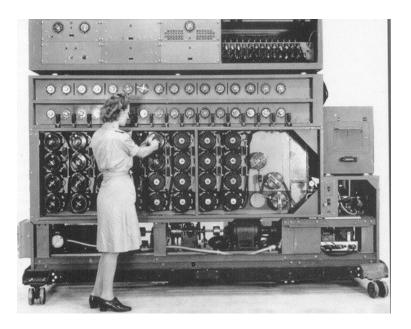
based on the letters of the key.

A form of polyalphabetic cipher.

Easy to break.

Enigma

A much more complex cipher.



One-time pad

Encryption:

```
M = 01011010111010100000111
```

$$C = 10010110101111011000010$$

$$C = M \oplus K$$
 (bit-wise XOR)

For all i:
$$C[i] = M[i] + K[i] \pmod{2}$$

One-time pad

Decryption:

$$C = 10010110101111011000010$$

M = 01011010111010100000111

Encryption: $C = M \oplus K$

<u>Decryption</u>: $C \oplus K = (M \oplus K) \oplus K = M \oplus (K \oplus K) = M$

(because $K \oplus K = 0$)

One-time pad

- M = 01011010111010100000111
- - C = 10010110101111011000010

One-time pad is perfectly secure:

For any M, if K is chosen uniformly at random, then C is uniformly at random.

So adversary learns nothing about M by seeing C.

But the shared key has to be as long as the message! Could we reuse the key?

One-time pad

$$M = 01011010111010100000111$$

$$C = 10010110101111011000010$$

Could we reuse the key?

One-time only:

Suppose you encrypt two messages M_I and M₂ with K

$$C_1 = M_1 \oplus K$$

$$C_2 = M_2 \oplus K$$

Then
$$C_1 \oplus C_2 = M_1 \oplus M_2$$

Shannon's Theorem

Is it possible to have a secure system like one-time pad with a smaller key size?

Shannon proved "no".

If K is shorter than M:

An adversary with unlimited computational power can learn some information about M.

Question

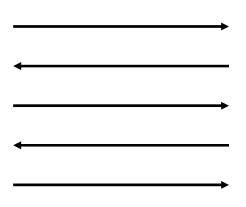
What if we relax the assumption that the adversary is computationally unbounded?

We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part. (public key cryptography)

Secret Key Sharing

Secret Key Sharing



1976

Whitfield Diffie

Martin Hellman

$$(B, E, N) \longrightarrow EXP \longrightarrow B^E \mod N \quad \text{easy}$$

$$(B^E, B, N) \longrightarrow LOG_B \longrightarrow E$$
seems hard

Want to make sure for the inputs we pick, LOG is hard.

e.g. we don't want
$$B^0$$
 B^1 B^2 B^3 B^4 ... 1 B 1 B 1 B 1 ...

Much better to have a generator B.

In
$$\mathbb{Z}_N^*$$

$$(B, E, N) \longrightarrow EXP \longrightarrow B^E \mod N$$
 easy

$$(B^E, B, N) \longrightarrow \underbrace{\text{LOG}_B} \longrightarrow E$$

We'll pick N=P a prime number. (This ensures there is a generator in \mathbb{Z}_P^* .)

We'll pick $B \in \mathbb{Z}_P^*$ so that it is a generator.

$$\{B^0, B^1, B^2, B^3, \cdots, B^{P-2}\} = \mathbb{Z}_P^*$$

Pick prime PPick generator $B \in \mathbb{Z}_P^*$ Pick random $E_1 \in \mathbb{Z}_{\varphi(P)}$

$$P, B, B^{E_1}$$

$$P, B, B^{E_1}$$

Pick random $E_2 \in \mathbb{Z}_{\varphi(P)}$

$$B^{E_2}$$

Compute

$$(B^{E_2})^{E_1} = B^{E_1 E_2}$$

Compute

$$(B^{E_1})^{E_2} = B^{E_1 E_2}$$

Pick prime P

Pick generator $B \in \mathbb{Z}_P^*$

Pick random $E_1 \in \mathbb{Z}_{\varphi(P)}$

This is what the adversary sees.

If he can compute LOG_B we are screwed!

$$P,B,B^{E_1}$$
 P,B,B^{E_1} Pick random $E_2 \in \mathbb{Z}_{arphi(P)}$

Compute

$$(B^{E_2})^{E_1} = B^{E_1 E_2}$$

Compute

$$(B^{E_1})^{E_2} = B^{E_1 E_2}$$

Secure?

Adversary sees: P, B, B^{E_1}, B^{E_2}

Hopefully he can't compute E_1 from B^{E_1} . (our hope is that LOG_B is hard)

Good news: No one knows how to compute LOG_B efficiently.

Bad news: Proving that it cannot be computed efficiently is at least as hard as the P vs NP problem.

Diffie-Hellman assumption:

Computing $B^{E_1E_2}$ from P, B, B^{E_1}, B^{E_2} is hard.

Decisional Diffie-Hellman assumption: You actually learn no information about $B^{E_1E_2}$

One can use:

Diffie-Hellman (to share a secret key)

One-time Pad

for secure message transmissions

Note

This is as secure as its weakest link, i.e. Diffie-Hellman.

Question

What if we relax the assumption that the adversary is computationally unbounded?

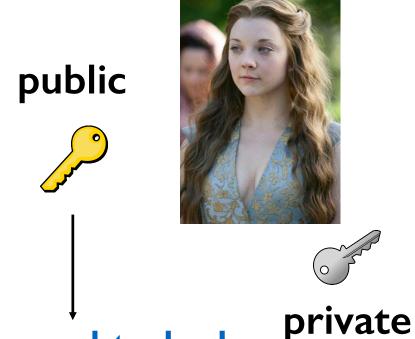
We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part. (public key cryptography) Public Key Cryptography

Public Key Cryptography

public 1

Public Key Cryptography



Can be used to lock.

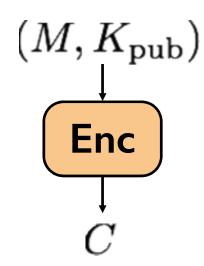
But <u>can't</u> be used to unlock.

Public key cryptography

BAUTPELL THAN YERS AREAD SAN SHORT STATES ARE THE SAN SHOT STATES ARE THE SAN SHORT STATES ARE THE SAN SHORT STATES ARE T

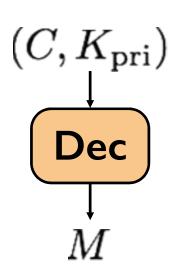
C

M

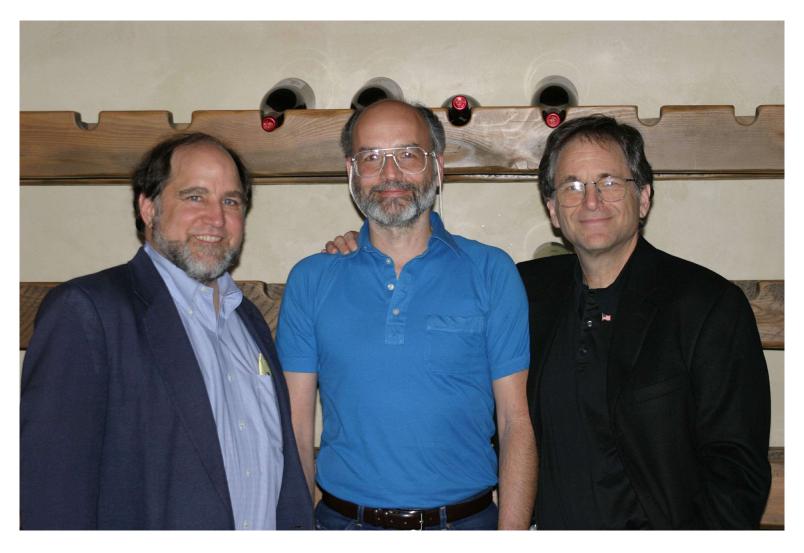


Enc should be "one-way".

Try to ensure it using computational complexity.



1977



Ron Rivest Adi Shamir Leonard Adleman

Clifford Cocks

Discovered RSA system 3 years before them. Remained secret until 1997. (classified information)

In
$$\mathbb{Z}_N^*$$

$$(B, E, N) \longrightarrow EXP \longrightarrow B^E \mod N$$
 easy

$$(B^E, E, N) \longrightarrow ROOT_E \longrightarrow B$$

seems hard

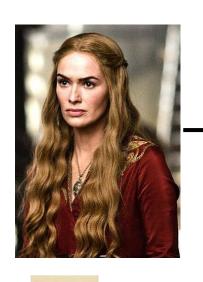
What if we encode using EXP?

$$(M = B) \in \mathbb{Z}_N^*$$

Public key can be (E, N).

and
$$E \in \mathbb{Z}_{\varphi(N)}$$

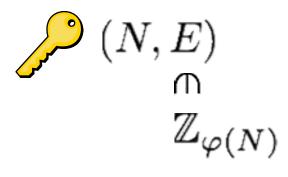
$$(M, K_{\text{pub}}) = (M, E, N) \longrightarrow \underbrace{\mathsf{Enc}} \longrightarrow M^E \bmod N$$
 $= C$



C

Menon Silver Son Seller Seller Son Seller Seller Son Seller Seller Son Seller Seller Son Seller Son Seller Son Seller Son Seller Son Seller Son Seller Seller Seller Seller Son Seller Se

M



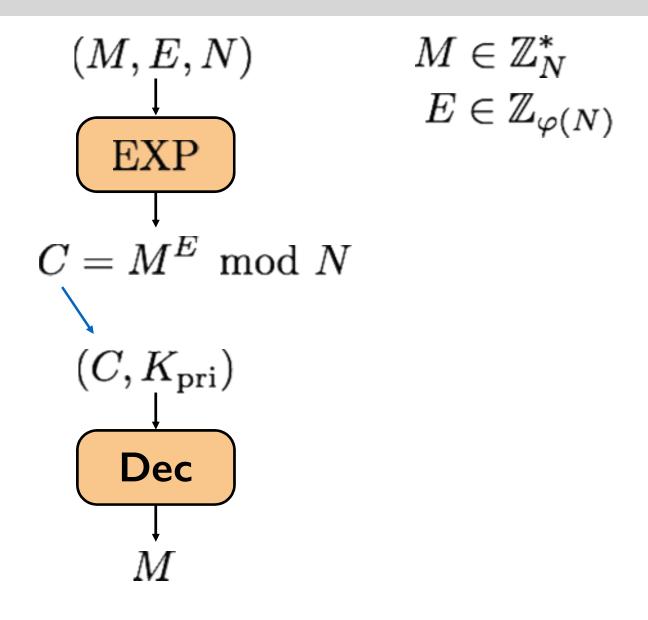
 $K_{\rm pri}$

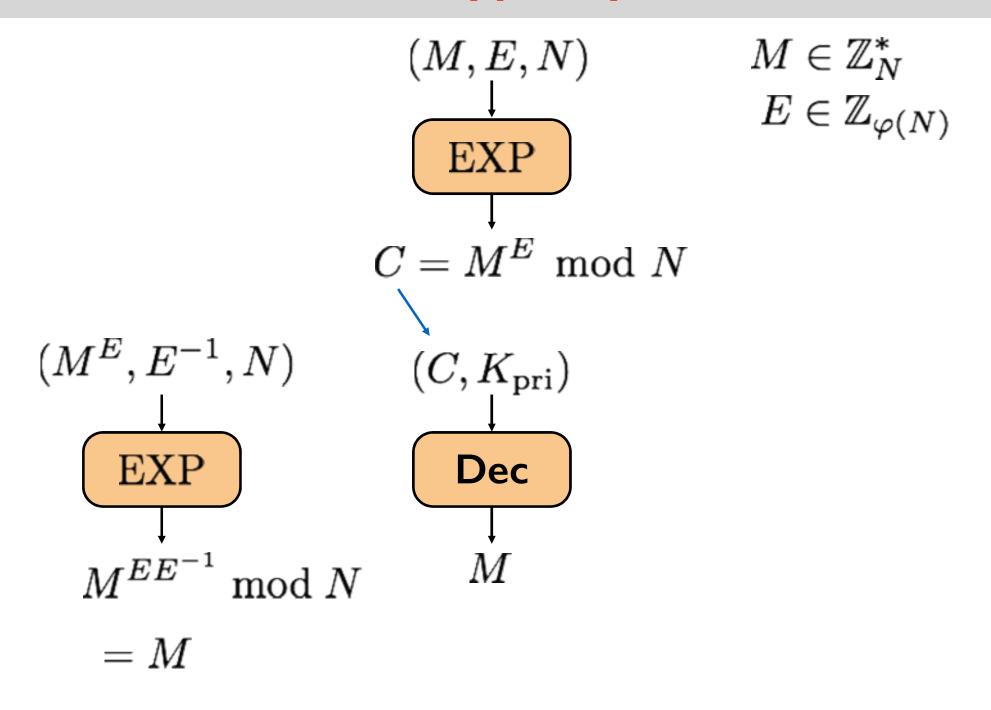
(M, E, N) Private key should allow us to invert EXP.

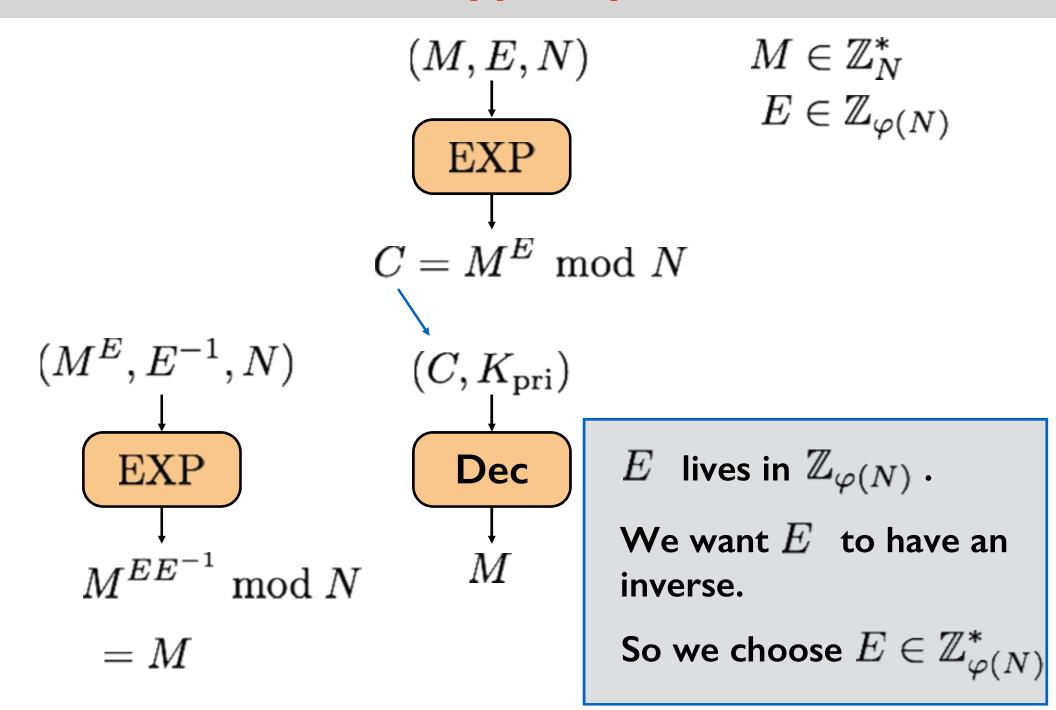
i.e. compute ROOTE

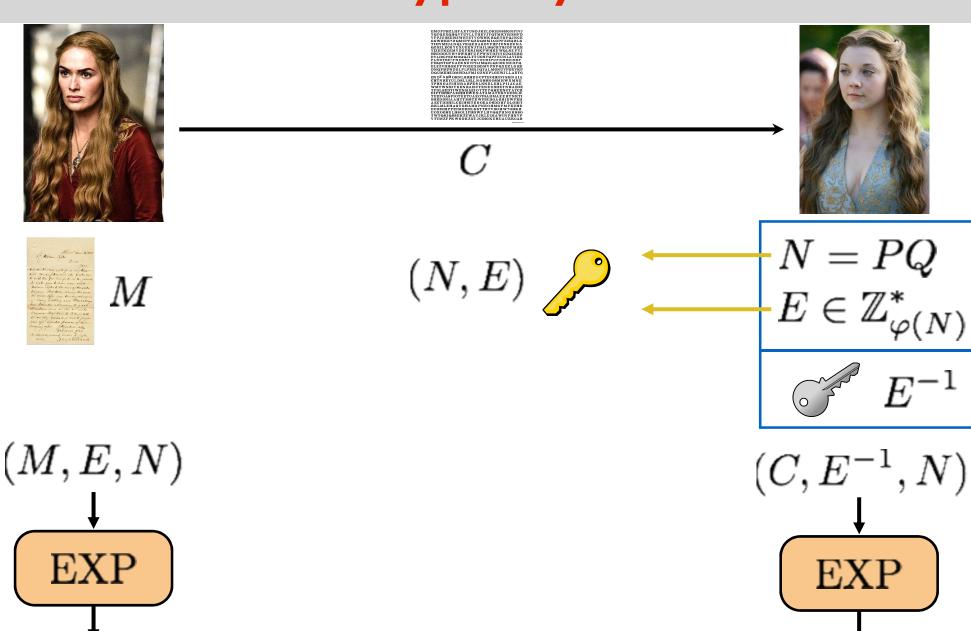


$$C=M^E \!\!\!\mod N$$

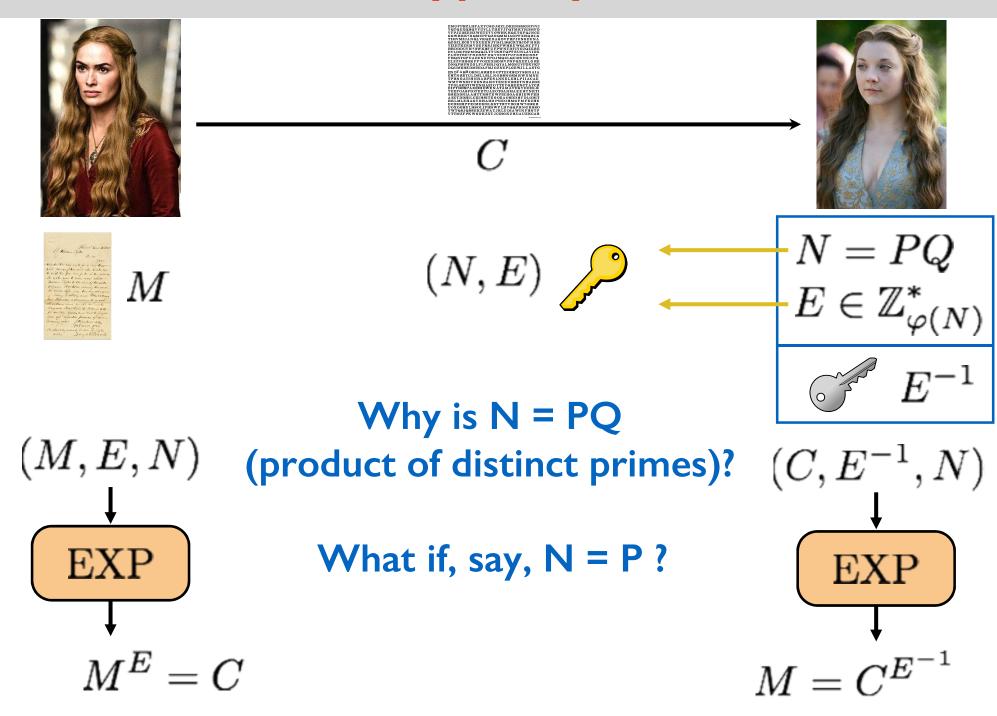








 $M^E = C$



How to choose N

How does Margaery compute E^{-1} ?

Computing $E^{-1} \in \mathbb{Z}_{\varphi(N)}^*$ is easy if you know $\varphi(N)$

She knows P and Q, so $\varphi(PQ) = (P-1)(Q-1)$.

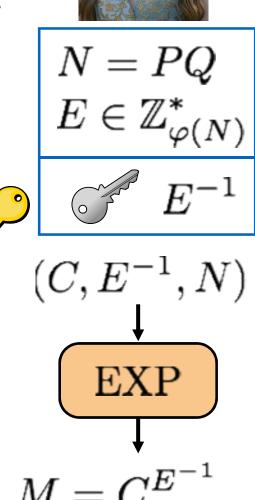
If the adversary can compute $E^{-1} \in \mathbb{Z}_{\varphi(N)}^*$, we are screwed!

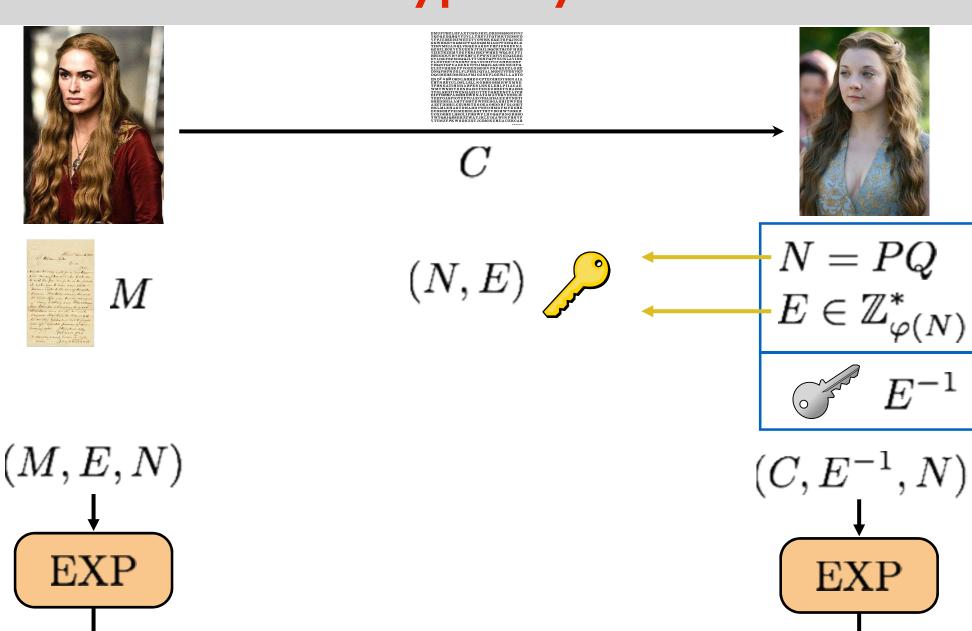
Adversary sees (N, E).

Can he compute $\varphi(N)$?

We believe this is computationally hard.

If the adversary can factor N efficiently, he can also compute $\varphi(N)$.



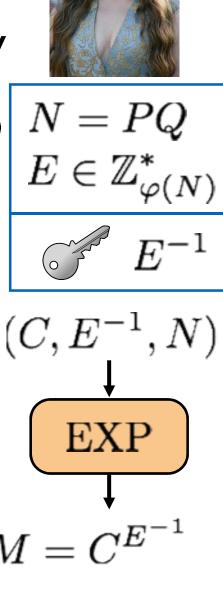


 $M^E = C$

Secure?

The advantage Margaery has over the adversary is that she can compute $\varphi(N)$. (and therefore E^{-1})

If the adversary can factor N efficiently, he can also compute $\varphi(N)$. (and therefore E^{-1})

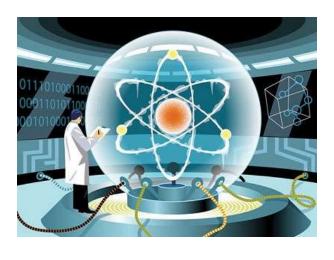


Concluding remarks

A variant of this is widely used in practice.

From N, if we can efficiently compute $\varphi(N)$, we can crack RSA.

If we can factor N, we can compute $\varphi(N)$.



Quantum computers can factor efficiently.

Is this the only way to crack RSA? We don't know!

So we are really hoping it is secure.

Study Guide

Modular Arithmetic:

- fast exponentiation
- generators
- hardness of root and logarithm (mod n)
- exp as a one-way func.

Cryptographic Algorithms:

- Cesar Cypher
- One Time Pad
- Diffie Hellman (Secure Key Exchange)
- RSA (Public Key Encryption)