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What is cryptography about?

\ Adversary
e Eavesdropper

“l will cut his throat”

“l will cut his throat”



What is cryptography about?

“loru23n8uladjkfb!#@”

“I will cut his throat” “loru23n8uladjkfb!'#@”
lencryption decryption[

“loru23n8uladjkfb!#@” “I will cut his throat”



What is cryptography about?

Study of protocols that avoid the bad affects of adversaries.
- Secure online voting schemes!?
- Digital signatures.
- Computation on encrypted data?

- Lero-Knowledge Interactive Proofs:
Can | convince you that | have proved P=NP without
giving you any information about the proof?



Reasons to like cryptography

Can do pretty cool and unexpected things.

Has many important applications.

Is fundamentally related to computational complexity.
In fact, comp. complexity revolutionized cryptography.
Applications of computationally hard problems.

Uses cool math (e.g. number theory).



The plan

First, we will review modular arithmetic.

Then we’ll talk about private (secret) key crypto.

Finally, we’ll talk about public key cryptography.



Review of Modular Arithmetic



[A mod N = remainder when you divide A by Nj

T e
(0|Zz34350|234o | 2

We write A= B mod N or A=y B
when A mod N = Bmod N .

Can view the universe as Zy = {0,1,2,...,N — 1}.
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behaves nicely behaves nicely
with respect to with respect to
addition multiplication
p(N) = |ZN]

if P prime, p(P)=P—1
if P, () distinct primes, p(PQ)= (P —-1)(Q —1)
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2 and 3 are called generators.
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Euler’s Theorem:

Forany A € Z) ,

AP =1,

Fermat’s Little Theorem:

Let P be aprime. Forany A€ Z}, A"~ 1 =1.
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IMPORTANT

When exponentiating elements A € Z};,

can think of the exponent living in the universe Z,(n).




Algorithms for Modular Arithmetic



> addition A+ B mod N
Do regular addition. Then take mod N.

> subtraction A — B= A+ (—B) mod N
-B = N-B. Then do addition.

> multiplication A- B mod N

Do regular multiplication. Then take mod N.

> division A/B=A-B ' mod N
Find B~ Then do multiplication.

> exponentiation A¥ mod N



> addition A+ B mod N
Do regular addition. Then take mod N.

> subtraction A — B=A+ (—B) mod N
-B = N-B. Then do addition.

> multiplication A- B mod N
Do regular mujtinlicati ~

B~ exists iff ged(B,N) = 1.

> division A/
Find B! Our modification of Euclid’s Alg.

| computes B~ given B and N.
> exponentiati y




> addition A+ B mod N
Do regular addition. Then take mod N.

> subtraction A — B=A+ (—B) mod N
-B = N-B. Then do addition.

> multiplication A- B mod N

Do regular multiplication. Then take mod N.

> division A/B=A-B ' mod N
Find B~ Then do multiplication.

> exponentiation A” mod N

repeatedly square and mod to compute powers of two
then multiply those mod n as neccessary



> addition A+ B mod N
Do regular addition. Then take mod N.

> subtraction A — B = A+ (—B) mod N
-B = N-B. Then do addition.

> multf A
Do r{ What about roots and

> divist logarithms?
Find _ /

> exponentiation A” mod N

repeatedly square and mod to compute powers of two
then multiply those mod n as neccessary



Arithmetic in 2

(B,E)A{ EXP j—*BE too big

Two inverse functions:

(B*, E) "[ ROOTEg j—' B m
(B,B)—{_LOGp }—~ E 3




Arithmetic in 2

(B, E) 4{ EXP j—*BE too big

Two inverse functions:

(B¥,E) —{ ROOTp |— B casy
(B¥, B) 4{ LOGp j_’ E easy




In Z

(B¥,E) —{ ROOTz |— B easy

(1881676371789154860897069, 3) — 123456789

(do binary search and exponentiation)

(B¥,B)—{ LOCp |— E casy

(48519278097689642681155855396759336072749841943521979872827, 3)
— 123

(keep dividing by B)



Arithmetic in LN

(B,E,N)—{ EXP }—B” mod N easy

Two inverse functions:

(BE:E: N)‘{ ROOTEJ—> B m
(BE*:B':N)A’[ LOGp ]—' E 43




Arithmetic in Lin

(B,E,N)—{ EXP }—B” mod N easy

Two inverse functions:

E seems
(BF,E,N)—{ ROOTg }— B cem

E - seems
(B¥,B,N)—{ LOGg }— E -

Question: Why do the algorithms from the setting
of Z do not work in Z}; ?




Arithmetic in LN

(B,E,N)—{ EXP }—B” mod N easy

Two inverse functions:

. seems

E - seems
(B¥,B,N)—{ LOGg }— E -

One-way function: easy to compute, hard to invert.
EXP seems to be one-way.




Private Key Cryptography



Private key cryptography

Parties must agree on a key pair beforehand.



Private key cryptography

there must be a secure way of
exchanging the key



Private key cryptography

EMUFPHZLRFAXYUSDIKZLDKRNSHGNTIVY

HDDDUVH? DWKAF UFPWNTDFIYCUQZERE
EVLDKIEZMOQQILT. s

FHANTGPUAEONOVPDIMAGLAD MUNE DF @
ELZZVRRGKFFVOEEXBDMVPNFQXEZLG RE
DNQFMPNZGLFLPMRJ GYALMGNUVEDX VKD
DQUMEBEDMHDAFM) G ZNUPLAEWILLAETG
EN DY A HR OHNLSRHEQ CPTEOIBIDYSHN ALA
GHTNREYULDSLLSLLN OHSNOSMRW XMNE
TPRNGATIHNRARPES LNNELERLPTIACAE

v

M (plaintext)

Enc should be “one-way”.

Try to ensure it using
the secrecy of the key.

EMUFPHZLRFAXYUSDJIKZLDKRNSHGNFIVI

C (ciphertext)

VTTMZE PR WGDKZXT JCDIGRUHUA UERGAR



A note about security

Better to consider worst-case conditions.

Assume the adversary knows everything

except the key(s) and the message:

Completely sees cipher text C'.

Completely knows the algorithms

Enc

and

Dec|.




Caesar shift

Example: shift by 3

abcdefghijklmnopgrstuvwxyz

CELEEE Rt e

defghijklmnopgrstuvwxyzabc

(similarly for capital letters)

“Dear Math, please grow up and solve your own
problems.”
“Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq
sureohpv.”

@% : the shift number Easy to break.



Substitution cipher
abcdefghijklmnopgrstuvwxyz
UL LR e
Jkbdelmcfgnoxyrsvwzatupghi

@% : permutation of the alphabet

Easy to break by looking at letter frequencies.



Vigenere cipher

M =“Dear Math, please grow up and solve your own problems.”

K = “helloworldhelloworldhelloworldhelloworldhelloworldhell”’

K[i] determines the shifting factor for M[i].

a shift by 0 . .
: A series of different Caesar
b shift by | -
, ciphers
hift by 2
:I :h: @ bz 3 based on the letters of the key.

A form of polyalphabetic cipher.
Easy to break.



Enigma

A much more complex cipher.




One-time pad

M = message K = key C = encrypted message
(everything in binary)

Encryption:
M= 0I0I10I0IT11010100000111

@ K= [1100110001010111100010]
C= 10010110101111011000010

C=M®K (bit-wise XOR)

Foralli: C[i] = M[i] + K[i] (mod 2)




One-time pad

M = message K = key C = encrypted message
(everything in binary)

Decryption:
C= 10010110IO01I111011000010
@ K= 11001100010101111000101

M= O0I0II0IOITIOIOI00000ITII
Encryption: C=M®K
Decryption: CHK=(MDK)DK=MD(KDK)=M
(because K@K = 0)




One-time pad

M= 0I10I101I0I11010100000111I
@ K= 11001100010101111000101

C= 10010110101111011000010

One-time pad is perfectly secure:

For any M, if K is chosen uniformly at random,
then C is uniformly at random.

So adversary learns nothing about M by seeing C.

But the shared key has to be as long as the message!
Could we reuse the key?



One-time pad

M= 0I10I10I0I11010100000111
@ K= 11001100010101111000101

C= 10010110101111011000010

Could we reuse the key?

One-time only:

Suppose you encrypt two messages M| and M with K
Ci =M ®K
CH= Mz@K

Then C;®G =M ®BM,



Shannon’s Theorem

Is it possible to have a secure system like one-time pad
with a smaller key size?

Shannon proved “no’’.

If K is shorter than M:

An adversary with unlimited computational power
can learn some information about M.



Question

What if we relax the assumption that the adversary
is computationally unbounded?

We can find a way to share a random secret key.
(over an insecure channel)

We can get rid of the secret key sharing part.
(public key cryptography)



Secret Key Sharing



Secret Key Sharing




Diffie-Hellman key exchange

1976

Whitfield Diffie Martin Hellman



Diffie-Hellman key exchange

In Z}y
(B,E,N)—{ EXP }—B” mod N easy
E seems
(B¥,B,N)—{ LOGp }— E .

Want to make sure for the inputs we pick, LOG is hard.

e.g. we don’t wantB" B! B® B® B* ...
I | S [ [N [
1 B 1 B 1

Much better to have a generator B.



Diffie-Hellman key exchange

In Z}y
(B,E,N)—{ EXP }—B” mod N easy
E seems
(B¥,B,N)—{ LOGp }— E .

we’'ll pick N = P a prime number.
(This ensures there is a generator in Zp .)

We'll pick B € Zp so that it is a generator.
{BO;, Bl, BQ’ BS, e BP—Q} — Z*P



Diffie-Hellman key exchange

Pick prime P
Pick generatorB € Zp
Pick random E, € Z,(p)

E
FB,B  pp gk
Pick random E3 € Z,(p
B"z
Compute Compute

(BEE)EI _ BElEE (BEI)EE — BE]_EE




Diffie-Hellman key exchange

Pick prime P
Pick generatorB € Zp

Pick random E, € Z,(p) /

Compute
(BEE ) By BEl Eo

This is what the adversary sees.

If he can compute LOGp
we are screwed!

E
LB B P. B, BE:

BE-

Pick random E3 € Z,p

Compute
(BEI )Ez —|BE1E2




Secure!
Adversary sees: P, B, B¥1, B®

Hopefully he can’t compute E; from B!,
(our hope is that LOGpg is hard)

Good news: No one knows how to compute LOGpg
efficiently.

Bad news: Proving that it cannot be computed

efficiently is at least as hard as the P vs NP problem.

Diffie-Hellman assumption:
Computing!f:?ElE2 from P, B, B¥1, B2 is hard.

Decisional Diffie-Hellman assumption:
You actually learn no information about Bf1E2



One can use:

Diffie-Hellman
(to share a secret key)

-

One-time Pad

for secure message transmissions

Note
This is as secure as its weakest link, i.e. Diffie-Hellman.




Question

What if we relax the assumption that the adversary
is computationally unbounded?

We can find a way to share a random secret key.
(over an insecure channel)

—> We can get rid of the secret key sharing part.
(public key cryptography)



Public Key Cryptography



Public Key Cryptography

private



Public Key Cryptography

' rivate
Can be used to lock. P
But can’t be used to unlock.



Public key cryptography

EMUFPHZLRFAXYUSDIKZLDKRNSHGNTIVY
YQTAUXABAVYUVLLTREVIYQTMKYRDMID
VIBJUDEEHZWETZYY GWHK KQETGF QINCE
G

Y
S A
EVLDREEZMOQAIL T UOSTArTED

¥

ﬁKpub

A R Y .

M, Kpub Enc should be “one-way”’. C, Kpri

[Enc Try to ensure it using [Dec
computational

complexity.




RSA crypto system

1977

Ron Rivest Adi Shamir Leonard Adleman



RSA crypto system

V.
Clifford Cocks

Discovered RSA system 3 years before them.
Remained secret until 1997. (classified information)



RSA crypto system

In Z}y
(B,E,N)—{ EXP }—B” mod N easy
E seems
(B¥,E,N) —{ ROOTg }— B .

assume
What if we encode using EXP ? | (M =B )< Zj}
Public key can be (E, N) . and £ € Z,(n)

(M&Kpub):(MaE:N)—{ Enc j—>MEmodN
= C




RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHGNTIVY

Y
S A
EVLDREEZMOQAIL T UOSTArTED

D Gz
ENDYAHR OHNLSRHEO CPTEOIBIDY SHN ALA
GHTNREYULDSLLSLLN O RWXMNE
TPRNGATIHNRA Y NELERLDTIAGAL

VTTMZE PK WGDK ZXT JODIG KUHUA UEKOAR

¥

N.E

= (N)

Private key should allow » 23 prl

us to invert EXP.
[ EXP |
i.e. compute ROOTE




RSA crypto system

(M,E,N) M € Zy
b€ Zyw




RSA crypto system
(M,E,N)

M e Zy
b€ Zyw



RSA crypto system

(M,E,N) M e Zy
l E € Ziy(n
[ EXP ]
|
C=MY mod N
\
(Ca Il{liil‘i)

[ Dec J E lives in Z@(N) :

We want £/ to have an
inverse.

*
So we choose £ € Z




RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHGNTIVY

YQTAUXABAVYUVLLTREVIYQTMKYRDMID
VIBJUDEEHZWETZYY GWHK KQETGY QINCE
WHKK?DQMGPF azi AGPFXHARLG

VIZETKZEMVDUFKSJ HKE W QLSZ I
HHDDDUYH? DWKRE D £
EVLDKFEZMOQQILTT UGSYQPFEUNLAVIDX

VTTMZE PK WGDK ZXT JODIG KUHUA UEKOAR

Ao

N.E




RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHGNTIVY

YQTAUXABAVYUVLLTREVIYQTMKYRDMID
VIBJUDEEHZWETZYY GWHK KQETGY QINCE
WHKK?DQMGPF azi AGPFXHARLG

VIZETKZEMVDUFKSJ HKE W QLSZ I
HHDDDUYH? DWKRE D £
EVLDKFEZMOQQILTT UGSYQPFEUNLAVIDX

i My
ENDYAHR OHNLSRHEO CPTEOIBIDY SHN ALA
GHTNREYULDSLLSLL RWXMNE
TPRNGATIHNRA Y NELERLD1IAGAL

VTTMZE PK WGDK ZXT JODIG KUHUA UEKOAR

N.E

Why is N = PQ
M,E,N) (product of distinct primes)? E~' N

[ EXP j What if, say, N =P ? [ EXP j




How to choose N

How does Margaery compute E~'?

If the adversary can compute E~ ' € E;(ﬂ’) : FE € an(N)
we are screwed!
ﬁ / E~1
Adversary sees (V, E). | -
o(N) ? (C,E~",N)
Can he compute p(N) ! |
We believe this is computationally hard.
[ EXP |
If the adversary can factor NV efficiently, }

he can also compute ©(V). M=CE™’



RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHGNTIVY

YQTAUXABAVYUVLLTREVIYQTMKYRDMID
VIBJUDEEHZWETZYY GWHK KQETGY QINCE
WHKK?DQMGPF azi AGPFXHARLG

VIZETKZEMVDUFKSJ HKE W QLSZ I
HHDDDUYH? DWKRE D £
EVLDKFEZMOQQILTT UGSYQPFEUNLAVIDX

VTTMZE PK WGDK ZXT JODIG KUHUA UEKOAR

Ao

N, E




Secure!?

The advantage Margaery has over the adversary

is that she can compute p(N).

(and therefore E_l) ﬁ

If the adversary can factor NV efficiently,
he can also compute ¢(NV).

(and therefore E™')




Concluding remarks
A variant of this is widely used in practice.

From N, if we can efficiently computep(N),
we can crack RSA.

If we can factor N, we can compute ©(N).

Bl Quantum computers
" A& can factor efficiently.

g

Is this the only way to crack RSA?
We don’t know!

So we are really hoping it is secure.




Modular Arithmetic:

Study Guide

- fast exponentiation

- generators

- hardness of root and
logarithm (mod n)

- exp as a one-way func.

Cryptographic Algorithms:

- Cesar Cypher
- One Time Pad
- Diffie Hellman
(Secure Key Exchange)
- RSA

(Public Key Encryption)




