This Week and Next Week

What is computation?
What is an algorithm?
How can we mathematically define them?

This Week

Introducing deterministic finite automata (DFA)
Let's assume two things about our world

1. No universal machines exist.

2. We only have machines to solve decision problems.

State diagram of a DFA

\[\Sigma = \{0, 1\} \]

Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010

Decision:
Anatomy of a DFA

DFA as a programming language

```python
def foo(input):
    i = 0;
    STATE 0:
        if (i == input.length): return False;
        letter = input[i];
        i++;
        switch(letter):
            case '0': go to STATE 0;
            case '1': go to STATE 1;
    STATE 1:
        if (i == input.length): return True;
        letter = input[i];
        i++;
        switch(letter):
            case '0': go to STATE 2;
            case '1': go to STATE 2;
    ...
```

Definition: Language decided by a DFA

Let M be a DFA.

We let $L(M)$ denote the set of strings that M accepts.

So, $L(M) = \{ x \in \Sigma^* : M(x) \text{ accepts.} \} \subseteq \Sigma^*$

If $L = L(M)$, we say that M recognizes L.
accepts decides computes
\[L(M) = \]

\[L(M) = \]

\[L(M) = \]
DFA Examples

\[M \]

\[\Sigma = \{a, b, c\} \]

- \(q_0 \)
- \(c \) to \(q_1 \)
- \(b, c \) to \(q_1 \)
- \(a \) to \(q_2 \)
- \(a, b, c \) to \(q_3 \)

\[L(M) = \]

Poll

The set of all words that contain at least three 0's
The set of all words that contain at least two 0's
The set of all words that contain 000 as a substring
The set of all words that contain 00 as a substring
The set of all words ending in 000
The set of all words ending in 00
The set of all words ending in 0
None of the above
Beats me

DFA construction practice

\[L = \{110, 101\} \]
\[L = \{0, 1\}^* \setminus \{110, 101\} \]
\[L = \{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\} \]
\[L = \{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or 3.}\} \]
\[L = \{e, 110, 110110, 110110110, \ldots\} \]
\[L = \{x \in \{0, 1\}^* : x \text{ contains the substring 110.}\} \]
\[L = \{x \in \{0, 1\}^* : 10 \text{ and 01 occur equally often in } x.\} \]
Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q
- Σ
- δ
- $q_0 \in Q$
- $F \subseteq Q$

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

with

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma \rightarrow Q$

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_0</td>
<td>q_2</td>
</tr>
</tbody>
</table>

q_0 is the start state

$F = \{q_1, q_2\}$

Formal definition: DFA accepting a string

Let $w = w_1 w_2 \cdots w_n$ be a string over an alphabet Σ.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

We say that M **accepts** the string w if there exists a sequence of states $r_0, r_1, \ldots, r_n \in Q$ such that

Otherwise we say M **rejects** the string w.
Formal definition: DFA accepting a string

Simplifying notation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

$\delta : Q \times \Sigma \to Q$ can be extended to $\delta^* : Q \times \Sigma^* \to Q$ as follows:

For $q \in Q, w \in \Sigma^*$,

$\delta^*(q, w) =$

In fact, even OK to drop $*$ from the notation.

M accepts w if $\delta(q_0, w) \in F$.

Otherwise M rejects w.

Definition: Regular languages

Definition:

Regular languages

All languages $\mathcal{P}(\Sigma^*)$

- $(0, 1)^*$ (strings of 0s and 1s)
- $[x \in (0, 1)^*: x \text{ starts and ends with same bit.}]$
- $[x \in (0, 1)^*: x \text{ is divisible by 2 or 3}]$
- $[x \in \{0, 1\}^*: x \text{ contains the substring 110}]$
- $[x \in (0, 1)^*: 0 \text{ and 1 occur equally often in } x]$
Regular languages

Questions:

1. Are all languages regular?
 (Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

A non-regular language

Theorem:
The language $L = \{0^n1^n : n \in \mathbb{N}\}$ is not regular.

Note $L = \{\varepsilon, 01, 0011, 000111, 00001111, \ldots\}$.

A non-regular language

Theorem:
The language $L = \{0^n1^n : n \in \mathbb{N}\}$ is not regular.

Intuition:
Theorem:
The language $L = \{0^n1^n : n \in \mathbb{N}\}$ is not regular.

A key component of the proof:

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Theorem:
The language $L = \{0^n1^n : n \in \mathbb{N}\}$ is not regular.

Proof:

Proving a language is not regular

What makes the proof work:

Exercise (test your understanding):

Show that the following language is not regular:

$L = \{c^{251}a^n b^{2n} : n \in \mathbb{N}\}$.

($\Sigma = \{a, b, c\}$)
Another non-regular language?

Question: Are all unary languages regular?
(a language \(L \) is unary if \(L \subseteq \Sigma^* \), where \(|\Sigma| = 1 \).)

Theorem:
The language \(\{0^{2^n} : n \in \mathbb{N}\} \) is not regular.

Regular languages

All languages \(\mathcal{P}(\Sigma^*) \)

Regular languages

\[
\begin{align*}
\{110, 101\} & \quad \{0^n1^n : n \in \mathbb{N}\} \\
\{0, 1\}^* & \quad \{0^{2^n} : n \in \mathbb{N}\}
\end{align*}
\]

Questions:

1. Are all languages regular?
 (Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?
Next Time

Closure properties of regular languages