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What is computation?

What is an algorithm?

How can we mathematically define them?

This Week and Next Week

Introducing deterministic finite automata (DFA)
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Let’s assume two things about our world

1.  No universal machines exist.

2.  We only have machines to solve decision problems.
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State diagram of a DFA
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Input:  1010
Decision: 

1010



Anatomy of a DFA

DFA as a programming language

0 1 1 1 1input =
def foo(input):
    i = 0;
    STATE 0: 
        if (i == input.length): return False;
        letter = input[i];
        i++;
        switch(letter):
           case ‘0’:  go to STATE 0;
           case ‘1’:  go to STATE 1;

    STATE 1: 
        if (i == input.length): return True;
        letter = input[i];
        i++;
        switch(letter):
           case ‘0’:  go to STATE 2;
           case ‘1’:  go to STATE 2;
          …

Definition:  Language decided by a DFA

Let       be a DFA.

We let            denote the set of strings that      accepts.

M

L(M) M

So, L(M) = {x 2 ⌃⇤ : M(x) accepts.}

If                  , we say that        recognizes     .L = L(M) M L
accepts
decides
computes

✓ ⌃⇤



DFA Examples
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DFA Examples

q0 q1

M

L(M) =

q2 q3

⌃ = {a, b, c}
a, b, c

a

c

a, b

b, c a, b, c

Poll

The set of all words ending in 00

None of the above

Beats me

The set of all words ending in 000

The set of all words ending in 0

The set of all words that contain 00 as a substring

The set of all words that contain 000 as a substring

The set of all words that contain at least two 0’s

The set of all words that contain at least three 0’s

DFA construction practice

L = {110, 101}

L = {0, 1}⇤\{110, 101}

L = {x 2 {0, 1}⇤ : x starts and ends with same bit.}

L = {x 2 {0, 1}⇤ : |x| is divisible by 2 or 3.}

L = {✏, 110, 110110, 110110110, . . .}

L = {x 2 {0, 1}⇤ : x contains the substring 110.}

L = {x 2 {0, 1}⇤ : 10 and 01 occur equally often in x.}



Formal definition:  DFA

A deterministic finite automaton (DFA)        is a 5-tupleM

M = (Q,⌃, �, q0, F )

where
-     Q

-    ⌃

-     �

-             q0 2 Q

-             F ✓ Q

Formal definition:  DFA

A deterministic finite automaton (DFA)        is a 5-tupleM

M = (Q,⌃, �, q0, F )

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
� : Q⇥ ⌃ ! Q

F = {q1, q2}
q0 is the start state
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Formal definition:  DFA accepting a string

Let                             be a string over an alphabet    . w = w1w2 · · ·wn ⌃

Let                                  be a DFA.M = (Q,⌃, �, q0, F )

We say that       accepts the string     
if there exists a sequence of states
such that

M w
r0, r1, . . . , rn 2 Q

Otherwise we say       rejects the string     .M w



Formal definition:  DFA accepting a string

Let                                  be a DFA.M = (Q,⌃, �, q0, F )

                         can be extended to � : Q⇥ ⌃ ! Q �⇤ : Q⇥ ⌃⇤ ! Q

as follows:

for                        , q 2 Q,w 2 ⌃⇤

�⇤(q, w) =

In fact, even OK to drop     from the notation.⇤

Otherwise       rejects     .M w

       accepts        if  M w �(q0, w) 2 F.

Simplifying notation

Definition:  Regular languages

Definition:                   

Regular languages

...

Regular languages

All languages

?

P(⌃⇤)



Regular languages

Questions:

1.  Are all languages regular?
(Are all decision problems computable by a DFA?)

2.  Are there other ways to tell if a language is regular?

A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Note                                                              .     L = {✏, 01, 0011, 000111, 00001111, . . .}

A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Intuition:



A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

A key component of the proof:

A non-regular language
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q4 q5

Input:  0000000011111111

imagine some 
arbitrary transitions

Warm-up: 
Suppose a DFA with 6 states decides                               .L = {0n1n : n 2 N}

A non-regular language

Warm-up: 
Suppose a DFA with 6 states decides                               .L = {0n1n : n 2 N}

q0
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q2
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q4 q5

Input:  0000000011111111

imagine some 
arbitrary transitions



A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Proof:

Proving a language is not regular

What makes the proof work:

Proving a language is not regular

Exercise (test your understanding):

Show that the following language is not regular:

L = {c251anb2n : n 2 N}.

⌃ = {a, b, c}(                    )



Another non-regular language?

Question:  Are all unary languages regular?

(a language      is unary if              , where             .)L L ✓ ⌃⇤ |⌃| = 1

Theorem:
The language                         is not regular.{02

n

: n 2 N}

Regular languages

...

Regular languages

All languages
P(⌃⇤)

{0n1n : n 2 N}

...

{02
n

: n 2 N}

Regular languages

Questions:

1.  Are all languages regular?
(Are all decision problems computable by a DFA?)

2.  Are there other ways to tell if a language is regular?



Next Time

Closure properties of regular languages


