
 15-251: Great Ideas in
 Theoretical Computer Science

 Lecture 3: Deterministic Finite Automaton (DFA) 1

Sep 4th, 2018

input
data

output
data“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

This Week and Next Week

Introducing deterministic finite automata (DFA)

input
data

output
data

DFA

This Week

Let’s assume two things about our world

1. No universal machines exist.

2. We only have machines to solve decision problems.

+ isPrime Sorting

State diagram of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010
Decision:

1010

Anatomy of a DFA

DFA as a programming language

0 1 1 1 1input =
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

Definition: Language decided by a DFA

Let be a DFA.

We let denote the set of strings that accepts.

M

L(M) M

So, L(M) = {x 2 ⌃⇤ : M(x) accepts.}

If , we say that recognizes .L = L(M) M L
accepts
decides
computes

✓ ⌃⇤

DFA Examples

L(M) =

q0 q1

1

1

0 0
M

DFA Examples

q0 q1

M

L(M) =

0, 1

0, 1

DFA Examples

q0 q1

1

0
M

L(M) =

1

0

DFA Examples

q0 q1

M

L(M) =

q2 q3

⌃ = {a, b, c}
a, b, c

a

c

a, b

b, c a, b, c

Poll

The set of all words ending in 00

None of the above

Beats me

The set of all words ending in 000

The set of all words ending in 0

The set of all words that contain 00 as a substring

The set of all words that contain 000 as a substring

The set of all words that contain at least two 0’s

The set of all words that contain at least three 0’s

DFA construction practice

L = {110, 101}

L = {0, 1}⇤\{110, 101}

L = {x 2 {0, 1}⇤ : x starts and ends with same bit.}

L = {x 2 {0, 1}⇤ : |x| is divisible by 2 or 3.}

L = {✏, 110, 110110, 110110110, . . .}

L = {x 2 {0, 1}⇤ : x contains the substring 110.}

L = {x 2 {0, 1}⇤ : 10 and 01 occur equally often in x.}

Formal definition: DFA

A deterministic finite automaton (DFA) is a 5-tupleM

M = (Q,⌃, �, q0, F)

where
- Q

- ⌃

- �

- q0 2 Q

- F ✓ Q

Formal definition: DFA

A deterministic finite automaton (DFA) is a 5-tupleM

M = (Q,⌃, �, q0, F)

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
� : Q⇥ ⌃ ! Q

F = {q1, q2}
q0 is the start state

q0
q1
q2
q3

0 1�
q0

q0

q1
q2 q2

q2
q2

q3

Formal definition: DFA accepting a string

Let be a string over an alphabet . w = w1w2 · · ·wn ⌃

Let be a DFA.M = (Q,⌃, �, q0, F)

We say that accepts the string
if there exists a sequence of states
such that

M w
r0, r1, . . . , rn 2 Q

Otherwise we say rejects the string .M w

Formal definition: DFA accepting a string

Let be a DFA.M = (Q,⌃, �, q0, F)

 can be extended to � : Q⇥ ⌃ ! Q �⇤ : Q⇥ ⌃⇤ ! Q

as follows:

for , q 2 Q,w 2 ⌃⇤

�⇤(q, w) =

In fact, even OK to drop from the notation.⇤

Otherwise rejects .M w

 accepts if M w �(q0, w) 2 F.

Simplifying notation

Definition: Regular languages

Definition:

Regular languages

...

Regular languages

All languages

?

P(⌃⇤)

Regular languages

Questions:

1. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

Note . L = {✏, 01, 0011, 000111, 00001111, . . .}

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

Intuition:

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

A key component of the proof:

A non-regular language

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

Proof:

Proving a language is not regular

What makes the proof work:

Proving a language is not regular

Exercise (test your understanding):

Show that the following language is not regular:

L = {c251anb2n : n 2 N}.

⌃ = {a, b, c}()

Another non-regular language?

Question: Are all unary languages regular?

(a language is unary if , where .)L L ✓ ⌃⇤ |⌃| = 1

Theorem:
The language is not regular.{02

n

: n 2 N}

Regular languages

...

Regular languages

All languages
P(⌃⇤)

{0n1n : n 2 N}

...

{02
n

: n 2 N}

Regular languages

Questions:

1. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

Next Time

Closure properties of regular languages

