

Closed under union		
If $L_1\subseteq \Sigma^*$ and $L_2\subseteq \Sigma^*$ are regular, then so is $L_1\cup L_2$.		
Proof:		
The mindset		
<u> </u>		
Step 1: Imagining ourselves as a DFA		

Closed under union	
Proof: Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA deciding L_1 and $M'=(Q',\Sigma,\delta',q_0',F')$ be a DFA deciding L_2 . We construct a DFA $M''=(Q'',\Sigma,\delta'',q_0'',F'')$	
that decides $L_1 \cup L_2$, as follows:	
	7
More closure properties	
Closed under union:	
Closed under concatenation:	
Closed under star:	
super awesome vs regular	
What is the relationship between	
super awesome and regular?	

super awesome vs regular	
Theorem: Can define regular languages recursively as follows:	
Closed under concatenation	
Theorem: Let Σ be some finite alphabet. If $L_1\subseteq \Sigma^*$ and $L_2\subseteq \Sigma^*$ are regular, then so is L_1L_2 .	
The mindset Imagine yourself as a DFA.	
Rules:	
Can only scan the input once, from left to right.	
2) Can only remember "constant" amount of information. should not change based on input length	

Step I: Imagining ourselves as a DFA

Given $w\in \Sigma^*$, we need to decide if $w=uv\quad \text{for}\quad u\in L_1,\ v\in L_2.$

Problem: Don't know where u ends, v begins.

When do you stop simulating M_1 and start simulating M_2 ?

Suppose you know $\,u\,$ ends at $\,w_3$.

thread:

Step 2: Formally defining the DFA	
$M_1 = (Q, \Sigma, \delta, q_0, F) \qquad M_2 = (Q', \Sigma, \delta', q_0', F')$	
Q'' =	
δ'' :	
$q_0'' =$	
F'' =	