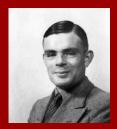
15-251: Great Theoretical Ideas in Computer Science Lecture 5

Turing's Legacy



What is **computation**? What is an **algorithm**?

How can we mathematically define them?

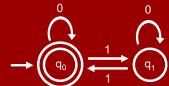
Quick Recap

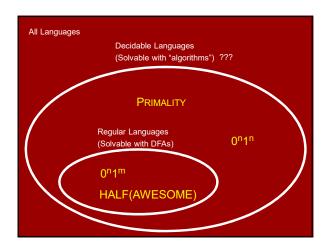
Mathematical definition of a (computational) problem:

Input / output function: $f: \Sigma^* \to \Sigma^*$

Language: $L = \{x \in \Sigma^* | f(x) = 1\} \subseteq \Sigma^*$

A simple mathematical model for algorithms: DFAs

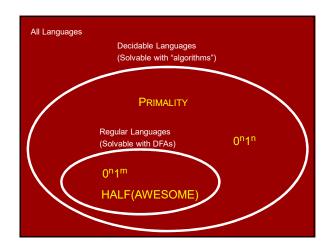


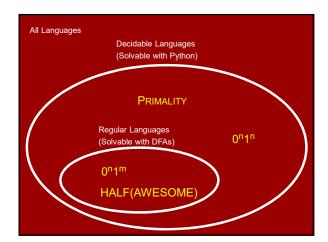


Solving 0ⁿ1ⁿ with Python

```
# Determines if string S is of form 0^n 1^n
def Solution( S ):
    i = 0
    j = len(S)-1
    while j >= i:
        if S[i] != '0' or S[j] != '1':
            return False
        i = i + 1
        j = j - 1
    return True
```

Solving 0^n1^n with C





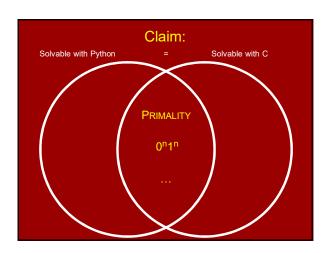
Question:
Should we just define "algorithm" to mean
a function written in Python? (allowed access to unlimited memory)
Answer:
Actually, we'll see that this would be OK!

Downsides as a formal definition:

- Why choose Python? Why not C, or Java, or SML, or...?
- Extremely complicated to rigorously define.
 E.g., official 2011 ISO definition of C
 requires a 701-page PDF file!
- A "philosophical" justification would be nice...

Downsides as a formal definition:

- Why choose Python?
 Why not C, or Java, or SML, or...?
- Extremely complicated to rigorously define.
 E.g., official 2011 ISO definition of C
 requires a 701-page PDF file!
- A "philosophical" justification would be nice...



-		

Claim: Solvable with Python = Solvable with C Proof intuition: Our shared experience with programming. "Proof:" 1. Solvable with Python ⊆ Solvable with C. The standard Python interpreter is written in C. 2. Solvable with C ⊆ Solvable with Python. It's pretty clear one can write a C interpreter in Python.

Interpreters

A Python function is (representable by) a string.

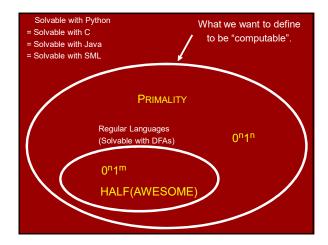
A Python interpreter is an algorithm M that takes two inputs: \mathbb{P} , a Python function; \mathbb{X} , a string; and step-by-step simulates $\mathbb{P}(\mathbb{X})$.

In particular, M(P,x) accepts if and only if P(x) accepts.

Interpreters

You can write a Python interpreter in C.
You can write a C interpreter in Python.
You can write a Python interpreter in Java.
You can write a Java interpreter in Python.
You can write a Python interpreter in SML.
You can write an SML interpreter in Python.
You can write a Python interpreter in Python!

The last one is called a "Universal Python Program"



Downsides as a formal definition:

- Why choose Python?
 Why not C, or Java, or SML, or...?
- Extremely complicated to rigorously define.
 E.g., official 2011 ISO definition of C
 requires a 701-page PDF file!
- A "philosophical" justification would be nice...

Downsides as a formal definition:

- Why choose Python? Why not C, or Java, or SML, or...?
- Extremely complicated to rigorously define.
 E.g., official 2011 ISO definition of C
 requires a 701-page PDF file!
- A "philosophical" justification would be nice…

It would be nice to have a **totally minimal** ("TM") programming language such that:

- a) can simulate Python, C, Java, SML, etc.;
- b) is simple enough to reason about rigorously completely mathematically.

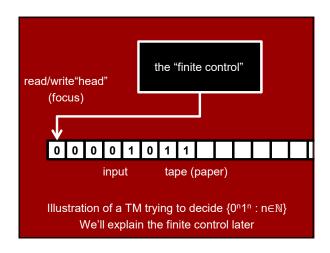
Turing MachineTM

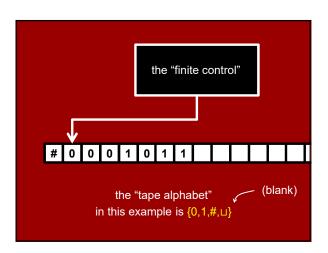
Inspired by

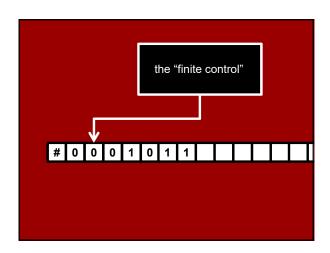
Turing's mathematical abstraction of a computer

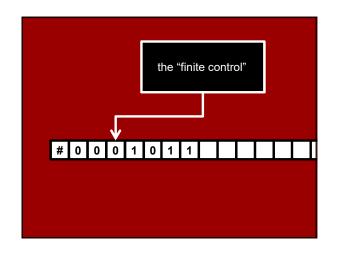
- A (human) computer writes symbols on paper
- WLOG, the paper is a sequence of squares
- No upper bound on the number of squares
- At most finitely many kinds of symbols
- Human observes one square at a time
- Human has only finitely many mental states
- Human can change symbols and change focus to a neighboring square, but only based on its state and the symbol it observes
- · Human acts deterministically

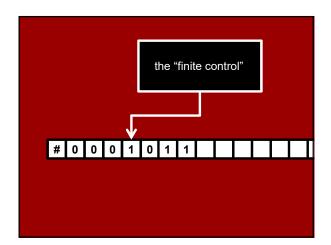
7

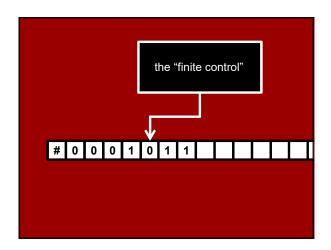


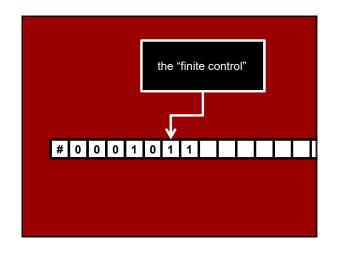


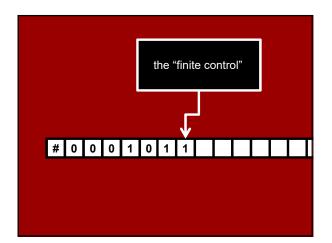


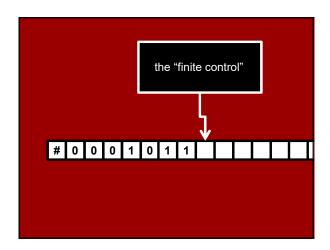


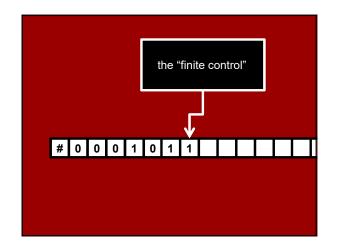


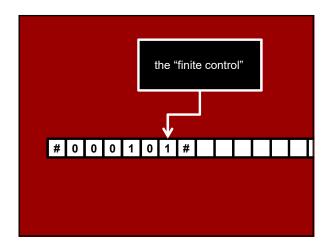


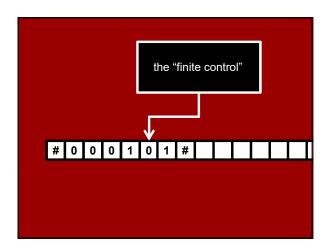


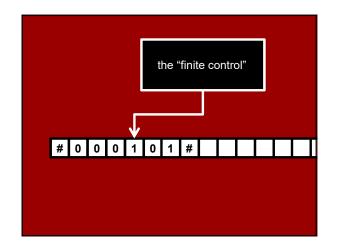


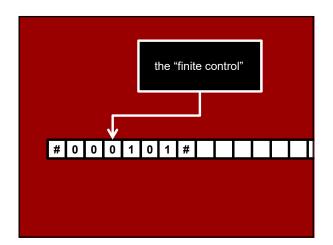


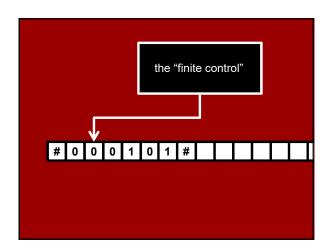


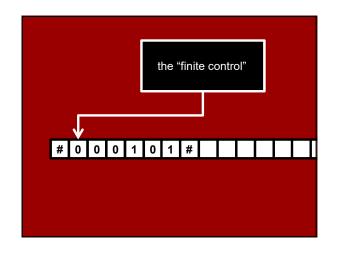


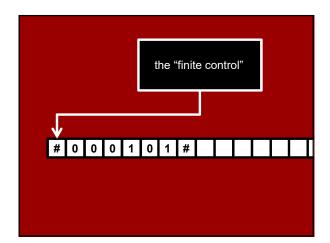


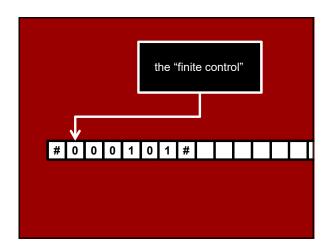


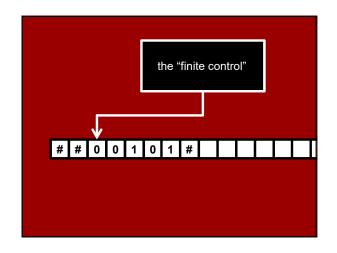


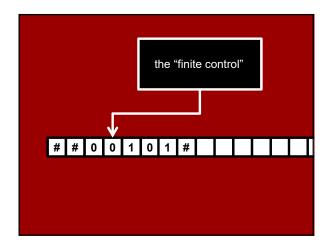


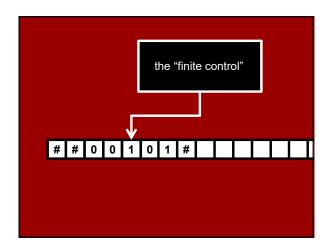


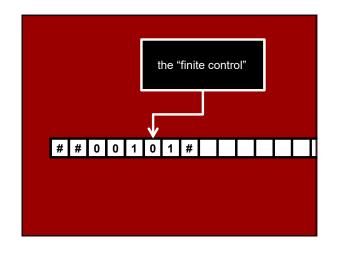


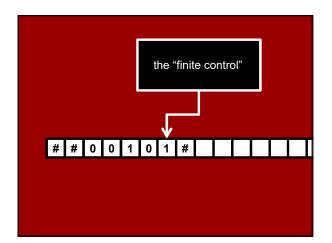


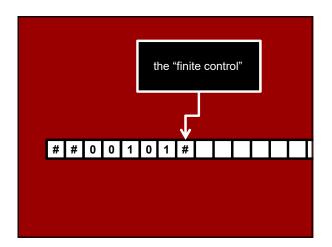


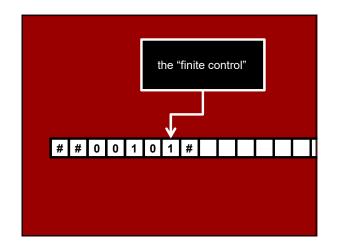


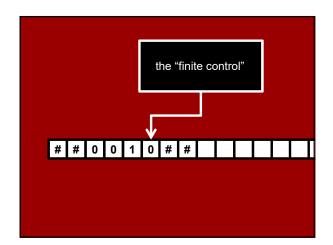


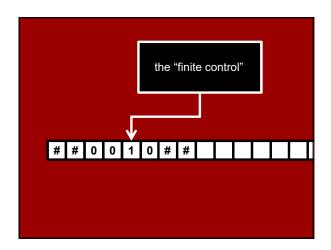


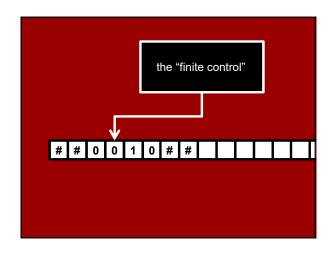


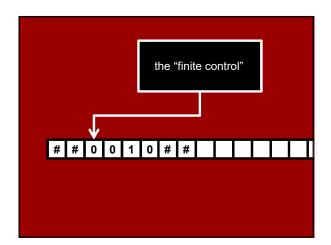


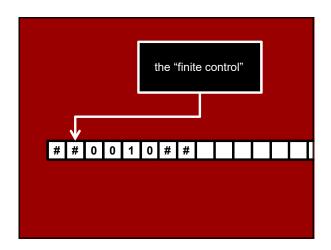


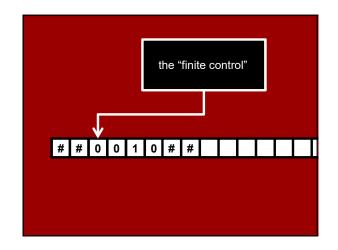


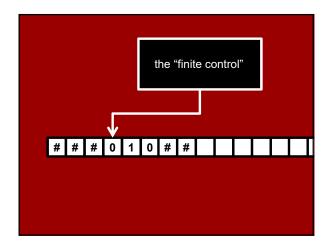


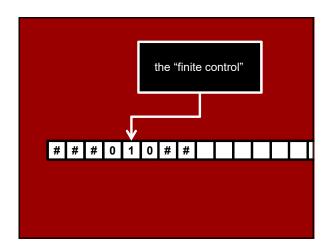


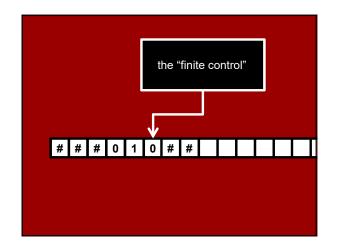


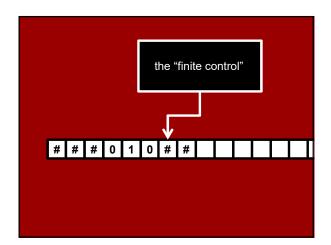


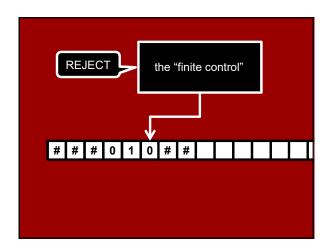


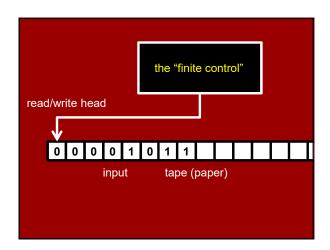






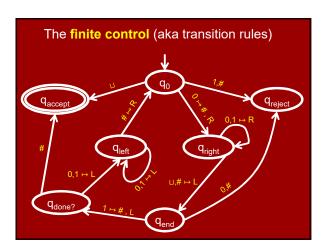






Turing's mathematical abstraction of a computer

- A (human) computer writes symbols on paper
- WLOG, the paper is a sequence of squares
- No upper bound on the number of squares
- At most finitely many kinds of symbols
- Human observes one square at a time
- Human has only finitely many mental states
- Human can change its state, change symbols, and change focus to a neighboring square, but only based on its state and the symbol it observes
- Human acts deterministically



Formal definition of Turing Machines

A Turing Machine is a 7-tuple $M = (Q, q_0, q_{accept}, q_{reject}, \Sigma, \Gamma, \delta):$

Q is a finite set of **states**,

 $q_0 \in Q$ is the **start state**,

 $q_{accept} \in Q$ is the accept state,

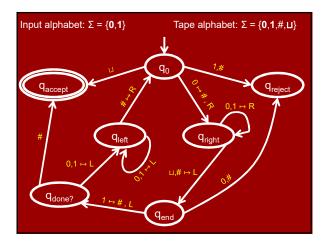
 $q_{reject} \in Q$ is the reject state, $q_{reject} \neq q_{accept}$.

 Σ is a finite **input alphabet** (with $\sqcup \notin \Sigma$),

 Γ is a finite tape alphabet (with $\sqcup \in \Gamma$, $\Sigma \subseteq \Gamma$),

 $\delta: Q' \times \Gamma \to Q \times \Gamma \times \{L,R\}$ is the transition function

(here Q' = Q \ $\{q_{accept}, q_{reject}\}$)



Formal definition of Turing Machines

Rules of computation:

Tape starts with input $x{\in}\Sigma^*$, followed by infinite ${\sqcup}$'s.

Control starts in state $\mathbf{q}_0,$ head starts in leftmost square.

If the current state is q and head is reading symbol seF, the machine transitions according to $\delta(q,s)$, which gives: the next state,

what tape symbol to overwrite the current square with, and whether the head moves Left or Right.

Technicality: moving left from the leftmost square ≡ staying put.

Continues until either the accept state or reject state reached.

When accept/reject state is reached, M $\mbox{{\bf halts}}.$

M might also never halt, in which case we say it loops.

Decidable languages

Definition:

A language $L \subseteq \Sigma^*$ is **decidable** if there is a Turing Machine M which:

- 1. Halts on every input $x \in \Sigma^*$.
- 2. Accepts inputs x∈L and rejects inputs x∉L.

Such a Turing Machine is called a **decider**. It 'decides' the language L.

We like deciders. We don't like TM's that sometimes loop.

Computable functions

Definition:

A function $f: \Sigma^* \to \{0,1\}$ is computable if $L = \{x \in \Sigma^* : f(x) = 1\}$ is decidable

A function f: $\Sigma^* \to (\Gamma \setminus \{\sqcup\})^*$ is **computable** if there is a Turing Machine M which:

Halts on every input $x \in \Sigma^*$ with the tape containing f(x) followed by \sqcup 's.

Decidable languages

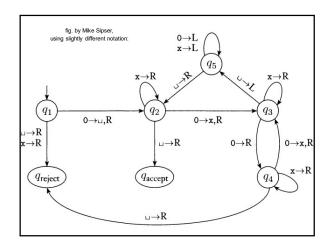
Examples:

Hopefully you're convinced that $\{0^n1^n : n \in \mathbb{N}\}$ is decidable. (Recall it's not "regular".)

The language $\{0^{2^n} : n \in \mathbb{N}\} \subseteq \{0\}^*$, i.e. $\{0, 00, 0000, 00000000, ...\}$, is decidable.

Proof: I'll show you a decider TM for it...

_	-
٠,	•.
_	•



Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM operates. Should be 'obvious' how to translate into a Low Level description.

High Level:

Skips 'standard' details, just highlights 'tricky' details. For experts only!

$\{0^{2^n}: n\in\mathbb{N}\}$ is decidable

Medium Level description:

- 1. Sweep from left to right across the tape, overwriting a # over top of every *other* 0.
- 2. If you saw one 0 on the sweep, accept.
- 3. If you saw an odd number of 0's, reject.
- 5. Go back to step 1.

TM programming exercises & tricks

- 1. Move right (or left) until first ⊔ encountered.
- 2. Shift entire input string one cell to the right
- 3. Convert input $x_1x_2x_3\cdots x_n$ to $x_1\sqcup x_2\sqcup x_3\sqcup\cdots\sqcup x_n$
- 4. Simulate large tape alphabet Γ with just $\{0,1,\sqcup\}$
- 5. Ability to "mark" cells (e.g., replace symbol a by å)
- 6. Copy a stretch of tape between two marked cells into another marked section
- 7. Increment or Decrement an input in binary.
- 8. Implement basic string and arithmetic operations

TM programming exercises & tricks

- 9. Simulate a TM with 2 tapes and read/write heads
- 10. Implement a dictionary data structure
- 11. Simulate "random access memory"
- 12.
- 13. Simulate an assembly language interpreter
- 14. Simulate a C interpreter
- 15. Create a Turing Machine interpreter or Universal TM, i.e.,
 - a Turing Machine $\ensuremath{\mathsf{U}}$ whose input is
 - (M), the **encoding** of a TM M,
 - x, a string

and which **simulates** the execution of M on x.

Universal Turing Machine

If you get stuck on the last exercise, you can look up the answer in Turing's 1936 paper!

Solvable with Python = Solvable with C = Solvable with Java = Solvable with SML		e Languages Turing Machienes)
	PRIMALITY alar Languages rable with DFAs)	0 ⁿ 1 ⁿ
НА	LF(AWESOME)	

Church–Turing Thesis:

"Any natural / reasonable notion of computation can be simulated by a TM."

Describing Turing Machines

Low Level:

Medium Level:

High Level:

Super-high Level:

Just describe an algorithm / pseudocode.

Assuming the Church–Turing Thesis there exists a TM which executes that algorithm.

