
15-251: Great Theoretical Ideas in Computer Science

Turing’s Legacy

Lecture 5

What is computation?

What is an algorithm?

How can we mathematically define them?

Mathematical definition of a (computational) problem:

A simple mathematical model for algorithms:

q0 q1

0 0

1

1

Quick Recap

Input / output function:

Language:

DFAs

PRIMALITY

0n1m

0n1n
Regular Languages

(Solvable with DFAs)

Decidable Languages

(Solvable with “algorithms”) ???

HALF(AWESOME)

All Languages

Determines if string S is of form 0^n 1^n

def Solution(S):

i = 0

j = len(S)-1

while j >= i:

if S[i] != '0' or S[j] != '1':

return False

i = i + 1

j = j - 1

return True

Solving 0n1n with Python

/* Determines if string S is of form 0^n 1^n */

int Solution(char S[])

{

int i = 0, j;

while (S[j] != NULL) /* NULL is end-of-string char */

j++;

j--;

while (j >= i)

{

if (S[i] != '0' || S[j] != '1')

return 0; /* Reject */

i++;

j--;

}

return 1; /* Accept */

}

Solving 0n1n with C

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

Decidable Languages

(Solvable with “algorithms”)

All Languages

0n1m

HALF(AWESOME)

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

All Languages

Decidable Languages

(Solvable with Python)

0n1m

HALF(AWESOME)

Question:

Should we just define “algorithm” to mean

a function written in Python?
(allowed access to unlimited memory)

Answer:

Actually, we’ll see that this would be OK!

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

requires a 701-page PDF file!

• A “philosophical” justification would be nice…

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

requires a 701-page PDF file!

• A “philosophical” justification would be nice…

PRIMALITY

0n1n

…

Solvable with Python Solvable with C

Claim:
=

“Proof:”

Solvable with Python Solvable with C

Claim:
=

Proof intuition:

Our shared experience with programming.

Proof:

1. Solvable with Python Solvable with C.

The standard Python interpreter is written in C.

2. Solvable with C Solvable with Python.

It’s pretty clear one can write a C interpreter in Python.

Interpreters

A Python function is (representable by) a string.

A Python interpreter is an algorithm M that

takes two inputs: P, a Python function;

x, a string;

and step-by-step simulates P(x).

In particular, M(P,x) accepts if and only if P(x) accepts.

Interpreters

You can write a Python interpreter in C.

You can write a C interpreter in Python.

You can write a Python interpreter in Java.

You can write a Java interpreter in Python.

You can write a Python interpreter in SML.

You can write an SML interpreter in Python.

You can write a Python interpreter in Python!!

The last one is called a

“Universal Python Program”

Solvable with Python

= Solvable with C

= Solvable with Java

= Solvable with SML

What we want to define

to be “computable”.

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

0n1m

HALF(AWESOME)

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

requires a 701-page PDF file!

• A “philosophical” justification would be nice…

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

requires a 701-page PDF file!

• A “philosophical” justification would be nice…

It would be nice to have a totally minimal (“TM”)

programming language such that:

a) can simulate Python, C, Java, SML, etc.;

b) is simple enough to reason about rigorously

completely mathematically.

Turing Machine

Inspired by

™

Turing’s mathematical abstraction of a computer

• A (human) computer writes symbols on paper

• WLOG, the paper is a sequence of squares

• No upper bound on the number of squares

• At most finitely many kinds of symbols

• Human observes one square at a time

• Human has only finitely many mental states

• Human can change symbols and change

focus to a neighboring square, but only

based on its state and the symbol it observes

• Human acts deterministically

tape (paper)

0 0 0 0 1 0 1 1

input

the “finite control”
read/write“head”

(focus)

Illustration of a TM trying to decide {0n1n : n }

We’ll explain the finite control later

0 0 0 1 0 1 1

the “finite control”

the “tape alphabet”

in this example is {0,1,#, }

(blank)

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 0 1 0 1

the “finite control”

#

0 0 1 0 1

the “finite control”

##

0 0 1 0 1

the “finite control”

##

0 0 1 0 1

the “finite control”

##

0 0 1 0 1

the “finite control”

##

0 0 1 0 1

the “finite control”

##

0 0 1 0 1

the “finite control”

##

0 0 1 0 1

the “finite control”

##

0 0 1 0

the “finite control”

#

0 0 1 0

the “finite control”

#

0 0 1 0

the “finite control”

#

0 0 1 0

the “finite control”

#

0 0 1 0

the “finite control”

#

0 0 1 0

the “finite control”

#

0 1 0

the “finite control”

##

0 1 0

the “finite control”

##

0 1 0

the “finite control”

##

0 1 0

the “finite control”

##

0 1 0

the “finite control”

##

REJECT

tape (paper)

0 0 0 0 1 0 1 1

input

the “finite control”

read/write head

Turing’s mathematical abstraction of a computer

• A (human) computer writes symbols on paper

• WLOG, the paper is a sequence of squares

• No upper bound on the number of squares

• At most finitely many kinds of symbols

• Human observes one square at a time

• Human has only finitely many mental states

• Human can change its state, change symbols,

and change focus to a neighboring square,

but only based on its state and the symbol it observes

• Human acts deterministically

q0

qrejectqaccept

qend

qrightqleft

qdone?

0,1 R

,# L

#

0,1 L

The finite control (aka transition rules)

Formal definition of Turing Machines

A Turing Machine is a 7-tuple

M = (Q, q0, qaccept, qreject, Σ, Γ, δ):

Q is a finite set of states,

q0 Q is the start state,

qaccept Q is the accept state,

qreject Q is the reject state, qreject ≠ qaccept.

Σ is a finite input alphabet (with Σ),

Γ is a finite tape alphabet (with Γ, Σ Γ),

δ : Q’×Γ → Q×Γ×{L,R} is the transition function
(here Q’ = Q \ {qaccept, qreject})

Input alphabet: Σ = {0,1} Tape alphabet: Σ = {0,1,#, }

q0

qrejectqaccept

qend

qrightqleft

qdone?

0,1 R

,# L

#

0,1 L

Formal definition of Turing Machines

Rules of computation:

Tape starts with input x Σ*, followed by infinite ’s.

Control starts in state q0, head starts in leftmost square.

If the current state is q and head is reading symbol s Γ,

the machine transitions according to δ(q,s), which gives:

the next state,

what tape symbol to overwrite the current square with,

and whether the head moves Left or Right.

Technicality: moving left from the leftmost square ≡ staying put.

Continues until either the accept state or reject state reached.

When accept/reject state is reached, M halts.

M might also never halt, in which case we say it loops.

Decidable languages

Definition:

A language L Σ* is decidable if there is

a Turing Machine M which:

1. Halts on every input x Σ*.

2. Accepts inputs x L and rejects inputs x L.

Such a Turing Machine is called a decider.

It ‘decides’ the language L.

We like deciders. We don’t like TM’s that sometimes loop.

Computable functions

Definition:

A function f: Σ* → (Γ \ { })* is computable if there is

a Turing Machine M which:

Halts on every input x Σ* with

the tape containing f(x) followed by ’s.

A function f : Σ* → {0,1} is computable

if L = {x Σ* : f(x) = 1} is decidable

Decidable languages

Examples:

Hopefully you’re convinced that {0n1n : n }

is decidable. (Recall it’s not “regular”.)

The language {02n
: n } {0}*,

i.e. {0, 00, 0000, 00000000, …},

is decidable.

Proof: I’ll show you a decider TM for it…

fig. by Mike Sipser,

using slightly different notation:

Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM

operates. Should be ‘obvious’ how to

translate into a Low Level description.

High Level:

Skips ‘standard’ details, just highlights

‘tricky’ details. For experts only!

{02n
: n } is decidable

Medium Level description:

1. Sweep from left to right across the tape,

overwriting a # over top of every other 0.

2. If you saw one 0 on the sweep, accept.

3. If you saw an odd number of 0’s, reject.

4. Move back to the leftmost square.
(Say you write on the leftmost square at the

very beginning so that you can recognize it later.)

5. Go back to step 1.

TM programming exercises & tricks

1. Move right (or left) until first encountered.

2. Shift entire input string one cell to the right

3. Convert input x1x2x3···xn to x1 x2 x3 ··· xn

4. Simulate large tape alphabet Γ with just {0,1, }

5. Ability to “mark” cells (e.g., replace symbol a by å)

6. Copy a stretch of tape between two marked cells into

another marked section

7. Increment or Decrement an input in binary.

8. Implement basic string and arithmetic operations

TM programming exercises & tricks

9. Simulate a TM with 2 tapes and read/write heads

10. Implement a dictionary data structure

11. Simulate “random access memory”

12. ….

13. Simulate an assembly language interpreter

14. Simulate a C interpreter

15. Create a Turing Machine interpreter or Universal TM, i.e.,

a Turing Machine U whose input is

M , the encoding of a TM M,

x, a string

and which simulates the execution of M on x.

Universal Turing Machine

If you get stuck on the last exercise, you can

look up the answer in Turing’s 1936 paper!

Solvable with Python

= Solvable with C

= Solvable with Java

= Solvable with SML

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

Decidable Languages

(decidable by Turing Machienes)
=

0n1m

HALF(AWESOME)

Church–Turing Thesis:

“Any natural / reasonable notion of

computation can be simulated by a TM.”

Describing Turing Machines

Low Level:

Medium Level:

High Level:

Super-high Level:

Just describe an algorithm / pseudocode.

Assuming the Church–Turing Thesis

there exists a TM which executes that algorithm.

Definitions:
Turing Machines
Decidable languages/

computable functions
Universal TM
Church−Turing Thesis

Theorems/proofs:
{02n

: n } is decidable
{0n1n : n } is decidable
Equivalence of Solvability
(between Python, C, TM)

Practice:
Programming with TM’s

Study Guide

