15-251: Great Theoretical Ideas in Computer Science Lecture 6 Turing's Legacy Continues Theoretical Ideas in Computer Science Lecture 6 Turing's Legacy Continues Theoretical Ideas in Computer Science Lecture 6

Robustness of Decidability

Decidability power is the same for TMs with:

- one-sided or double-sided infinite tape
- ability to stay in addition to going left / right
- even a fixed (oblivious) moving pattern works
- binary or larger finite tape alphabet
- one tape or a finite number of tapes/heads

Decidability power is also the same as:

- Python, C, Java, Assembly (any other language)
- Random Access Machiene + other comp. models
- Lambda-Calculus

Side note: Efficiency

Model details (and encodings) do play a role when it comes to efficiency, e.g., how many computation steps are needed.

Examples:

- a TM with one tape can simulate any multi-tape TM with a quadratic slowdown (sometimes needed)
- Random Access Machines can be simulated by a multi-tape TM with logarithmic slowdown
- Quantum computation can be simulated with exponential slowdown. It is unknown whether a super-polynomial slowdown is needed)

Robustness of Decidability

Most computational models, including those abstracted from any natural phenomenon, tend to be either wimpy or Turing equivalent, i.e., exactly equivalent in computational power to TMs.

No candidates of potentially implementable / natural computational models that are more powerful than a TM have been suggested.

Church—Turing Thesis (1936): "Any natural / reasonable notion of computation can be simulated by a TM."

Cellular Automata

Most systems / the world can be described as many (tiny) parts interacting with other close-by parts.

Formal computational model:

A Cellural automaton (CA) consists of:

- cells with a finite set of states Q
- a neighborhood relation between cells
- a transition function $\delta_v \colon \mathbf{Q}^{\mathsf{deg}(v)+1} \to \mathsf{Q}$

Computation: In every round every cell v (synchronously) transitions its state according to δ_{ν} based on its and its neighbors' state.

Applications of Cellular Automata

- Simulation of Biological Processes
- Simulation of Cancer cells growth
- Predator Prey Models
- Art
- Simulation of Forest Fires
- · Simulations of Social Movement
- ...many more..

Example CA: Conway's Game of Life Cells form the infinite 2D-Grid $Q = \{alive, dead\}$ 3 transition rules (δ : $Q^9 \rightarrow Q$): Loneliness: Life cell with fewer than 2 neighbors dies. Overcrowding: Life cell with at least 4 life neighbors dies. Procreation: Dead cell with exactly 3 neighbors gets born.

CA Turing Equivalence

Theorem: Python / a TM can simulate any CA.

Theorem: For any TM there is a 1D-CA simulating it. Construction Sketch:

- For TM with state set Q and tape alphabet Γ create 1D-CA with state space Γ x (Q \cup {-}).
- Cells simulate the tape and exactly one cell indicates the position of the a head and the TM state.
- Cells only transition if a neighboring cell contains the head.
- Transitions are based on the TM transition function.

CA Turing Equivalence

Theorem: Python / a TM can simulate any CA.

Theorem: For any TM there is a 1D-CA simulating it. Construction Sketch:

For TM with state set Q and tape alphabet Γ create 1D-CA with state space Γ x (Q \cup {-})..

Cells simulate the tape and exactly one cell indicates the position of the a head and the TM state. Cells only transition if a neighboring cell contains the head.

Transitions are based on the TM transition function.

Theorem: Game of Life can simulate a universal TM.

Church–Turing Thesis:	
"Any natural / reasonable notion of	
computation can be simulated by a TM."	
Decidability	
Decidable languages	
Definition:	
A language L ⊆ Σ* is decidable if there is a Turing Machine M which:	
 Halts on every input x∈ Σ*. 	
2. Accepts inputs x∈L and rejects inputs x∉L.	
Such a Turing Machine is called a decider . It 'decides' the language L.	
We like deciders. We don't like TM's that sometimes loop.	

3 ,	
Fix some alphabet Σ .	
We use the $\langle \cdot \rangle$ notation to denote the encoding of an	
object as a string in Σ^* .	
Examples:	
$\langle M angle \in \Sigma^*$ is the encoding a TM M	
$\langle D angle \in \Sigma^*$ is the encoding a DFA D	
$\langle M_1, M_2 angle \in \Sigma^*$ is the encoding of a pair of TMs	
$\langle M,x angle \in \Sigma^*$ is the encoding a pair (M,x) , where M is a TM, and $x\in \Sigma^*$.	
	-
B 11117 B 1	
Decidability: Poll	
ACCEPT _{DFA} = { $\langle D, x \rangle$ D is a DFA that accepts x}	
γ ($D, x/\gamma$) is a B γ (and a deceptor x_j	
$SELF\text{-ACCEPT}_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA that accepts} \langle D \rangle \; \}$	
$EMPTY_{DFA}$ = { $\langle D \rangle$ D is a DFA that accepts no x}	
Emiliary Para distribution of the state of t	
EQUIV _{DFA} =	
= $\{\langle D,D'\rangle \mid D \text{ and } D' \text{ are DFA and L(D) = L(D')}\}$	
Docidability Evernles	
Decidability: Examples	
$ACCEPT_{DFA} = \{ \langle D, x \rangle \mid D \text{ is a DFA that accepts } x \}$	
SELF-ACCEPT_DFA = {\langle D\rangle D is a DFA that accepts $\langle D \rangle$ }	
-	
Theorem:	
ACCEPT _{DFA} is decideable. SELF-ACCEPT _{DFA} is decideable.	
Proof: Simulate DFA step by step.	
, , , , , ,	

Decidability: Examples	
$EMPTY_{DFA} \texttt{=} \{ \langle D \rangle \mid D \text{ is a DFA that accepts no x} \}$	
Theorem: EMPTY _{DFA} is decidable.	
Proof:	
A DFA D accepts the empty language iff	
no accepting state is reachable from the start state via a simple sequence of states.	
Try all Q ! possible such sequences.	
	•
Decidability: Examples	
$\begin{aligned} EQUIV_{DFA} = \\ &= \{ \ \langle D, D' \rangle \ \ D \ and \ D' \ are \ DFA \ and \ L(D) = L(D') \} \end{aligned}$	
Theorem:	
EQUIV _{DFA} is decidable.	
Proof:	
Create a DFA D" for the symmetric difference $L(D'') = (L(D) \cap \overline{L(D')}) \cup (\overline{L(D)} \cap L(D'))$	
using the Union and Intersection theorem for DFA. Run the decider TM for EMPTY _{DFA} on $\langle D'' \rangle$.	
Train the decided that is, Link to the perfect (- / /).	
Reductions	
Using one problem as a subroutine to solve	-
another is a powerful algorithmic technique.	
Definition:	
Language A <i>reduces to</i> language B means:	
"It is possible to decide A using an algorithm for deciding B as a subroutine."	
Notation: $A \leq_T B$ (T stands for Turing).	
Think, "A is no harder than B".	

Reductions	
Fact: Suppose A ≤ _⊤ B; i.e., A reduces to B.	
If B is decidable, then A is also decidable.	
Here: EQUIV _{DFA} ≤ _T EMPTY _{DFA} and EMPTY _{DFA} is decidable.	-
This makes EQUIV _{DFA} decidable. Indeed, EQUIV _{DFA} is at most as hard as EMPTY _{DFA}	
because solving EQUIV $_{DFA}$ is easy given a solution to EMPTY $_{DFA}$.	
Undecidability	
Undecidability	
Definition:	
A language L ⊆ ∑ *is undecidable if there is no Turing Machine M which:	
 Halts on every input x∈ Σ*. Accepts inputs x∈L and rejects inputs x∉L. 	

Poll

Let A be the set of all languages over $\Sigma = \{0,1\}$.

Select all correct ones:

- A is finite
- A is infinite
- A is countable
- A is uncountable

Poll

Let A be the set of all languages over $\Sigma = \{0,1\}$.

Select all correct ones:

- A is finite

√- A is infinite

- A is countable

A is uncountable $|A|=|\mathcal{P}(\Sigma^*)|=|\mathcal{P}(\mathbb{N})|$

Question:

Is every language in {0,1}* decidable? \Leftrightarrow Is every function f : $\{0,1\}^* \rightarrow \{0,1\}$ computable?

Answer: No!

Every TM is encodable by a finite string. Therefore the set of all TM's is countable. So the subset of all *decider* TM's is countable.

Thus the set of all decidable languages is countable.

But the set of **all** languages is the power set of $\{0,1\}^*$ which is uncountable.

Question:

Is every language in $\{0,1\}^*$ decidable? \Rightarrow Is every function f: $\{0,1\}^* \rightarrow \{0,1\}$ computable?

Answer:

Essentially all (decision) functions are uncomputable!

Question:

Is it just weird languages that no one would care about which are *undecidable*?

Answer (due to Turing, 1936):

Sadly, no.

There are many natural languages one would like to compute but which are undecidable.

Example: Program Equivalence

Given a program P and a program P' we would like to automatically decide whether both do the same thing.

Formally:

EQUIV_{TM} =

= { $\langle P,P' \rangle$ | P and P' are Python programs and L(D) = L(D')}

Useful for:

- Compiler Optimization
- Matching programs to their specification
- Autograder for 112 or 251 ©

Example: 112 Autograder First 112 assignment: Write a "Hello World" program. Given a program P submitted by a student we want to automatically decide whether P does the right thing. We want an algorithm A such that: iff P outputs "Hello World" and otherwise Example: 112 Autograder Given a program P and a program P' we would like to automatically decide whether both do the same thing. Formally: EQUIV_{TM} = $= \{\langle P, P' \rangle \mid P \text{ and } P' \text{ are Python programs and } \}$ L(D) = L(D')Useful for: - Compiler Optimization - Matching programs to their specification - Autograder for 112 or 251 © 112 Autograder Submission 1 $\begin{aligned} & \text{main}(t_{-,a}) \cdot \text{char}^* \, a; \left\{ \text{return!} \; 0 \! + \! 1 \! + \! 3 \! + \! \text{main}(-87,1_-, \text{main}(-86,0,a+1) + a) \right\} \\ & \text{return!} \; 1, t \! < \! - \! ? \; \text{main}(t+1,_-,a) \cdot 3, \; \text{main}(-94,-27+t,a) \cdot 8 \! \text{d} t == 2? - 413? \; \text{main}(2,_-t_1,^- \%s) \\ & \text{sd} \; ' \; \text{doin}' \; 1 \! + \! 9 \! + \! 16 \! + \!$ This C program prints out all the lyrics of The Twelve Days Of Christmas.

Ok, so let just run the program P and check the output.

112 Autograder Submission 2

```
def HelloWorld():

t = 3

while (True):

for n in xrange(3, t+1):

for x in xrange(1, t+1):

for y in xrange(1, t+1):

for z in xrange(1, t+1):

if (x**n + y**n == z**n):

return "Hello World"

t += 1
```


This program terminates and outputs "Hello World" if and only if Fermat's Last Theorem is false.

112 Autograder Submission 3

```
numberToTest := 2;
flag := 1;
while flag = 1 do
flag := 0;
numberToTest := numberToTest + 2;
for p from 2 to numberToTest do
    if IsPrime(p) and IsPrime(numberToTest-p) then
    flag := 1;
    break;
    end if
    Terminates with "Hello World" output
    end for    if and only if Goldbach's Conjecture is false.
end do
print("HELLO WORLD")
```

Some uncomputable functions

Given two TM descriptions, $\langle M_1 \rangle$ and $\langle M_2 \rangle$, do they act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, (M), does it print out "HELLO WORLD"?

Given a TM description (M) and an input x, does M halt on input x?

Given a TM description (M), does M halt when the input is a blank tape?

