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Solvable with Python

= Solvable with C

= Solvable with Java

= Solvable with SML

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

Decidable Languages

(decidable by Turing Machienes)
=

0n1m

HALF(AWESOME)



Robustness of Decidability

Decidability power is the same for TMs with:

Decidability power is also the same as:

- Python, C, Java, Assembly (any other language)

- Random Access Machiene + other comp. models

- Lambda-Calculus

- one-sided or double-sided infinite tape 

- ability to stay in addition to going left / right

- even a fixed (oblivious) moving pattern works

- binary or larger finite tape alphabet

- one tape or a finite number of tapes/heads



Side note: Efficiency

Model details (and encodings) do play a role when it 

comes to efficiency, e.g., how many computation 

steps are needed. 

Examples:

- a TM with one tape can simulate any multi-tape TM with

a quadratic slowdown (sometimes needed)

- Random Access Machines can be simulated by a 

multi-tape TM with logarithmic slowdown

- Quantum computation can be simulated with exponential

slowdown. It is unknown whether a super-polynomial

slowdown is needed)



Robustness of Decidability

Most computational models, including those abstracted 

from any natural phenomenon, tend to be either wimpy or 

Turing equivalent, i.e., exactly equivalent in computational 

power to TMs.

No candidates of potentially implementable / natural 

computational models that are more powerful than a TM 

have been suggested. 

Church–Turing Thesis (1936):

“Any natural / reasonable notion of

computation can be simulated by a TM.”



Cellular Automata

Most systems / the world can be described as many (tiny) 

parts interacting with other close-by parts. 

Formal computational model:

A Cellural automaton (CA) consists of:

- cells with a finite set of states Q

- a neighborhood relation between cells

- a transition function δv: Qdeg(v)+1 → Q

Computation: In every round every cell v (synchronously) 

transitions its state according to δv based on its and its 

neighbors’ state.



Applications of Cellular Automata

• Simulation of Biological Processes

• Simulation of Cancer cells growth

• Predator – Prey Models

• Art

• Simulation of Forest Fires

• Simulations of Social Movement

• …many more.. 



Cellular Automata: Examples



Example CA: Conway’s Game of Life



Example CA: Conway’s Game of Life

Cells form the infinite 2D-Grid

Q = {alive,dead}

3 transition rules (δ: Q9 → Q): 

Loneliness:  Life cell with fewer than 2 neighbors dies.

Overcrowding:  Life cell with at least 4 life neighbors dies.

Procreation: Dead cell with exactly 3 neighbors gets born.



• loneliness

• overcrowding

• procreation

Conway’s Game of Life: Rule examples



Conway’s Game of Life: Patterns

block pond ship eater

Stable



time = 1 time = 2

Periodic

Time = 1 time = 2 time = 3 time = 4 time = 5

Moving



Example CA: Conway’s Game of Life



Theorem:  For any TM there is a 1D-CA simulating it.

Construction Sketch:

- For TM with state set Q and tape alphabet Γ create

1D-CA with state space Γ x (Q {-}).

- Cells simulate the tape and exactly one cell indi-

cates the position of the a head and the TM state. 

- Cells only transition if a neighboring cell contains

the head.

- Transitions are based on the TM transition function. 

CA Turing Equivalence

Theorem:  Python / a TM can simulate any CA.



# 0 0 1 0

finite control in state q

## #

# 0 0 1 0 ## #

- - q - -- -- - - - - - -

TM:

1D-CA:



# 0 0 1 0

finite control in state q

## #

# 0 0 1 0 ## #

- q - - -- -- - - - - - -

TM:

1D-CA:



# 0 0 1 0

finite control in state q

## #

# 0 0 1 0 ## #

q - - - -- -- - - - - - -

TM:

1D-CA:



# 0 0 1 0

finite control in state q

## #

# 0 0 1 0 ## #

- - - - -q -- - - - - - -

TM:

1D-CA:



# 0 0 1 0

finite control in state q’

## #

# 0 0 1 0 ## #

q’ - - - -- -- - - - - - -

TM:

1D-CA:



# # 0 1 0

finite control in state q’’

## #

# # 0 1 0 ## #

- q’’ - - -- -- - - - - - -

TM:

1D-CA:



# # 0 1 0

finite control in state q’’

## #

# # 0 1 0 ## #

- - q’’ - -- -- - - - - - -

TM:

1D-CA:



# # 0 1 0

finite control in state q’’

## #

# # 0 1 0 ## #

- - - q’’ -- -- - - - - - -

TM:

1D-CA:



# # 0 1 0

finite control in state q’’

## #

# # 0 1 0 ## #

- - - - -- q’’- - - - - - -

TM:

1D-CA:



Theorem:  For any TM there is a 1D-CA simulating it.

Construction Sketch:

For TM with state set Q and tape alphabet Γ create

1D-CA with state space Γ x (Q {-})..

Cells simulate the tape and exactly one cell indicates 

the position of the a head and the TM state. Cells only 

transition if a neighboring cell contains the head. 

Transitions are based on the TM transition function. 

CA Turing Equivalence

Theorem:  Python / a TM can simulate any CA.

Theorem:  Game of Life can simulate a universal TM. 



“Any natural / reasonable notion of

computation can be simulated by a TM.”

Church–Turing Thesis:



Decidability



Decidable languages

Definition:

A language L Σ* is decidable if there is 

a Turing Machine M which:

1.  Halts on every input  x Σ*.

2.  Accepts inputs x L and rejects inputs x L. 

Such a Turing Machine is called a decider.  

It ‘decides’ the language L.

We like deciders. We don’t like TM’s that sometimes loop.



Encoding different objects with strings

We use the      notation to denote the encoding of an 
object as a string in      .

Examples:

Fix some alphabet     .

is the encoding a TM

is the encoding a DFA

is the encoding of a pair of  TMs

is the encoding a pair            ,  where 

is a TM,  and             .



Decidability: Poll

ACCEPTDFA = {            | D is a DFA that accepts x}

EMPTYDFA = {        | D is a DFA that accepts no x}

EQUIVDFA =
= {              | D and D’ are DFA and L(D) = L(D’)}

SELF-ACCEPTDFA = {       | D is a DFA that accepts        }



Decidability: Examples

ACCEPTDFA = {            | D is a DFA that accepts x}

SELF-ACCEPTDFA = {       | D is a DFA that accepts        }

Theorem:

ACCEPTDFA is decideable.

SELF-ACCEPTDFA is decideable.

Proof:  Simulate DFA step by step.



Decidability: Examples

Theorem:

EMPTYDFA is decidable.

Proof:

A DFA D accepts the empty language iff

no accepting state is reachable from the start state

via a simple sequence of states.

Try all |Q|! possible such sequences. 

EMPTYDFA = {        | D is a DFA that accepts no x}



Decidability: Examples

EQUIVDFA is decidable.

Proof:

Create a DFA D’’ for the symmetric difference 

using the Union and Intersection theorem for DFA. 

Run the decider TM for EMPTYDFA on         .

EQUIVDFA =
= {              | D and D’ are DFA and L(D) = L(D’)}

Theorem:



Reductions

Definition:

Language A reduces to language B means:

“It is possible to decide A using an

algorithm for deciding B as a subroutine.”

Notation:              A ≤T B (T stands for Turing).

Think, “A is no harder than B”.

Using one problem as a subroutine to solve

another is a powerful algorithmic technique.



Reductions

Fact:

Suppose A ≤T B; i.e., A reduces to B.

If B is decidable, then A is also decidable.

Here:    

EQUIVDFA ≤T EMPTYDFA and EMPTYDFA is decidable.

This makes EQUIVDFA decidable. 

Indeed, EQUIVDFA is at most as hard as EMPTYDFA

because solving EQUIVDFA is easy given a

solution to EMPTYDFA.



Undecidability



Definition:

A language L Σ* is undecidable if there is 

no Turing Machine M which:

1.  Halts on every input  x Σ*.

2.  Accepts inputs x L and rejects inputs x L. 

Undecidability



Let     be the set of all languages over .

Select all correct ones:

- A is finite

- A is countable

- A is uncountable

- A is infinite

Poll

Σ = {0,1}



Let     be the set of all languages over              .

Select all correct ones:

- A is finite

- A is countable

- A is uncountable

- A is infinite

Poll

Σ = {0,1}



Question: 

Is every language in {0,1}* decidable?

Is every function f : {0,1}*→{0,1} computable?

Answer: 

Every TM is encodable by a finite string.  

Therefore the set of all TM’s is countable.

So the subset of all decider TM’s is countable.

Thus the set of all decidable languages is countable.

No!

But the set of all languages is the power set of {0,1}*

which is uncountable.



Question: 

Is every language in {0,1}* decidable?

Is every function f : {0,1}*→{0,1} computable?

Answer: 

Essentially all (decision) functions are uncomputable!



Question: 

Is it just weird languages that no one 

would care about which are undecidable?

Answer (due to Turing, 1936): 

Sadly, no.  

There are many natural languages

one would like to compute but

which are undecidable.



Example: Program Equivalence

Given a program P and a program P’ we would like to

automatically decide whether both do the same thing. 

Formally:  

Useful for:

- Compiler Optimization

- Matching programs to their specification

- Autograder for 112 or 251 

EQUIVTM =
= {              | P and P’ are Python programs and

L(D) = L(D’)}



Example: 112 Autograder

First 112 assignment: Write a “Hello World” program.

Given a program P submitted by a student we want to

automatically decide whether P does the right thing. 

We want an algorithm A such that:

A(     ) =
pass iff P outputs “Hello World” and

fail otherwise



Example: 112 Autograder

Given a program P and a program P’ we would like to

automatically decide whether both do the same thing. 

Formally:  

Useful for:

- Compiler Optimization

- Matching programs to their specification

- Autograder for 112 or 251 

EQUIVTM =
= {              | P and P’ are Python programs and

L(D) = L(D’)}



main(t,_,a ) char * a; { return!  0<t? t<3?  main(-79,-13,a+ main(-87,1-_, main(-86, 0, a+1 )   
+a)):  1, t<_? main( t+1, _, a ) :3,  main ( -94, -27+t, a ) &&t == 2 ?_ <13 ?  main ( 2, _+1, "%s 
%d %d\n" )  :9:16: t<0? t<-72? main( _, t, 
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;#q#n+,/+k#;*+,/'r 
:'d*'3,}{w+K w'K:'+}e#';dq#'l 
q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# ){nl]!/n{n#'; r{#w'r
nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; 
:{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' 
')# }'+}##(!!/") : t<-50? _==*a ? putchar(31[a]):  main(-65,_,a+1) : main((*a == '/') + t, _, a + 1 ) :  
0<t?  main ( 2, 2 , "%s") :*a=='/'||  main(0,  main(-61,*a, "!ek;dc i@bK'(q)-
[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry")  ,a+1);} 

This C program prints out all the lyrics of

The Twelve Days Of Christmas.

Ok, so let just run the program P and check the output.

112 Autograder Submission 1



This program terminates and outputs “Hello World”

if and only if Fermat’s Last Theorem is false.

112 Autograder Submission 2

def HelloWorld():
t = 3
while (True):

for n in xrange(3, t+1):
for x in xrange(1, t+1):

for y in xrange(1, t+1):
for z in xrange(1, t+1):

if (x**n + y**n == z**n): 
return “Hello World”

t += 1



numberToTest := 2;

flag := 1;

while flag = 1 do

flag := 0;

numberToTest := numberToTest + 2;

for p from 2 to numberToTest do

if IsPrime(p) and IsPrime(numberToTest−p) then

flag := 1;

break;

end if

end for

end do

print(“HELLO  WORLD”)

Terminates with “Hello World” output

if and only if Goldbach’s Conjecture is false.

112 Autograder Submission 3



Some uncomputable functions

Given two TM descriptions, M1 and M2 , do they

act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, M ,

does it print out “HELLO WORLD”?

Given a TM description M and an input x,

does M halt on input x?

Given a TM description M ,

does M halt when the input is a blank tape?



Definitions:
Cellular Automata (CA)
Reductions
Undecidability

Theorems/proofs:
Turing equivalency of CA
Decidability of several 

languages
Existence of undecidable 

problems

Practice:
Decidability Proofs

(via Reductions)

Study Guide


