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15-251: Great Theoretical Ideas in Computer Science

Undecidability

Lecture 7

Almost all Languages are undecidable 

Set of all languages:  

Set of all dec. lang.:  

Most languages do not have a TM deciding them 

Question: 

Is it just weird languages that no one 

would care about which are undecidable?

Answer (due to Turing, 1936): 

Sadly, no.  

There are many natural languages

one would like to compute but

which are undecidable.
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Many interesting Languages are undecidable 

In particular, any problems related to  non-wimpy / 

Turing equivalent computation are undecidable. 

Example: Program Equivalence

Given a program P and a program P’ we would like to

automatically decide whether both do the same thing. 

Formally:  

Useful for:

- Compiler Optimization

- Matching programs to their specification

- Autograder for 112 or 251 

EQUIVTM =
= {              | P and P’ are Python programs and

L(P) = L(P’)}

Decidable Problems

ACCEPTDFA = {            | D is a DFA that accepts x}

EMPTYDFA = {        | D is a DFA that accepts no x}

EQUIVDFA =
= {              | D and D’ are DFA and L(D) = L(D’)}

SELF-ACCEPTDFA = {       | D is a DFA that accepts        }

Theorem:

ACCEPTDFA, SELF-ACCEPTDFA, EMPTYDFA and

EQUIVDFA are decideable.
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Undecidable Problems

ACCEPTTM = {            | M is a TM that accepts x}

EMPTYTM = {        | M is a TM that accepts no x}

EQUIVTM =
= {              | M and M’ are TMs and L(M) = L(M’)}

SELF-ACCEPTTM = {       | M is a TM that accepts        }

Theorem:

ACCEPTTM, SELF-ACCEPTTM, EMPTYTM and

EQUIVTM are undecideable.

A simple undecidable language

Autograder / Hello World problem:     

Given a program P, is it terminating and

outputting “Hello World”?

HELLO = {       |  M is a TM that outputs “Hello  World”
when run on the empty intput}

main(t,_,a ) char * a; { return!  0<t? t<3?  main(-79,-13,a+ main(-87,1-_, main(-86, 0, a+1 )   
+a)):  1, t<_? main( t+1, _, a ) :3,  main ( -94, -27+t, a ) &&t == 2 ?_ <13 ?  main ( 2, _+1, "%s 
%d %d\n" )  :9:16: t<0? t<-72? main( _, t, 
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;#q#n+,/+k#;*+,/'r 
:'d*'3,}{w+K w'K:'+}e#';dq#'l 
q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# ){nl]!/n{n#'; r{#w'r
nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; 
:{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' 
')# }'+}##(!!/") : t<-50? _==*a ? putchar(31[a]):  main(-65,_,a+1) : main((*a == '/') + t, _, a + 1 ) :  
0<t?  main ( 2, 2 , "%s") :*a=='/'||  main(0,  main(-61,*a, "!ek;dc i@bK'(q)-
[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry")  ,a+1);} 

This C program prints out all the lyrics of

The Twelve Days Of Christmas.

Hello Problem Instance #1
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Terminates and outputs “Hello World” if and only if

Fermat’s Last Theorem is false.

Hello Problem Instance #2

def HelloWorld():
t = 3
while (True):

for n in xrange(3, t+1):
for x in xrange(1, t+1):

for y in xrange(1, t+1):
for z in xrange(1, t+1):

if (x**n + y**n == z**n): 
return “Hello World”

t += 1

numberToTest := 2;

flag := 1;

while flag = 1 do

flag := 0;

numberToTest := numberToTest + 2;

for p from 2 to numberToTest do

if IsPrime(p) and IsPrime(numberToTest−p) then

flag := 1;

break;

end if

end for

end do

print(“HELLO  WORLD”)

Terminates and outputs “Hello World”

if and only if Goldbach’s Conjecture is false.

Hello Problem Instance #3

A simple undecidable language

Autograder / Hello World problem:     

Given a program P, is it terminating and

outputting “Hello World”?

HELLO = {       |  M is a TM that outputs “Hello  World”
on the empty intput ε}

Halting problem:     

Given a program P, is it terminating?

HALTε = {       |  M is a TM terminating on ε}

HALT = {           |  M is a TM terminating on x}
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The Halting Problem is Undecidable

(1936)

The Halting Problem is Undecidable

Theorem:

Proof:

Assume for the sake of contradiction that

MHALT is a decider TM which decides HALT.

HALT = {           | M is a TM terminating on x}

The language 

is undecidable.

The Halting Problem is Undecidable

Here is the description of another TM called D,

which uses MHALT as a subroutine:

Given as input ⟨M⟩, the encoding of a TM M:

D executes MHALT( ⟨M, ⟨M⟩⟩ ).

If this call accepts, D enters an infinite loop.

If this call rejects,  D halts        (say, it accepts).

D:

D(⟨M⟩)   loops  if M(⟨M⟩) halts,

halts  if M(⟨M⟩) loops.
In other words…
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The Halting Problem is Undecidable

Assume MHALT is a decider TM which decides HALT.

Time for the contradiction: 

Does D(⟨D⟩) loop or halt?

We can use it to construct a machine D such that

D(⟨M⟩)   loops  if M(⟨M⟩) halts,

halts  if M(⟨M⟩) loops.

By definition, if it loops it halts and if it halts it loops.

Contradiction. 

BTW: This is essentially just

Cantor’s Diagonal Argument.

D(⟨M⟩) loops if M(⟨M⟩) halts, halts if M(⟨M⟩) loops

The set of all TM’s is countable, so list it:

M1

M2

M3

M4

M5

⁝

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ⟨M5⟩ ···

halts halts loops halts loops

loop loops loops loops loops

halts loops halts halts halts

halts halts halts halts loops

halts loops loops halts loops

How could D be on this list?

What would the diagonal entry be??

D(⟨M⟩) loops if M(⟨M⟩) halts, halts if M(⟨M⟩) loops

The set of all TM’s is countable, so list it:

M1

M2

M3

M4

M5

⁝

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ⟨M5⟩ ···

halts halts loops halts loops

loop loops loops loops loops

halts loops halts halts halts

halts halts halts halts loops

halts loops loops halts loops
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Given some code,

determine if it terminates.

It’s not: “we don’t know how to solve it efficiently”.

It’s not: “we don’t know if it’s a solvable problem”.

We know that it is unsolvable by any algorithm.

We know that it is unsolvable by any algorithm, any

mechanism, any human being, anything in this

world and any (physical) world we can imagine.

ACCEPT is undecidable

Theorem:

ACCEPT = {⟨M, x⟩ | M is a TM which accepts x}

is undecidable.

We could use the same diagonalization proof for ACCEPT. 

But maybe there is an easier way …

Particularly, ACCEPT seems clearly harder than HALT. 

After all, how can I decide if a program accepts if I don’t

even know if it halts. 

ACCEPT is undecidable

Theorem:

ACCEPT = {⟨M, x⟩ | M is a TM which accepts x}

is undecidable.

ACCEPT is at least as hard as HALT

HALT is at most as hard as ACCEPT

HALT would be easy if ACCEPT were easy

New Proof Strategy:

Try to show that:
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ACCEPT is undecidable

Theorem:

ACCEPT = {⟨M, x⟩ | M is a TM which accepts x}

is undecidable.

Proof (by contradiction):
Assume ACCEPT is decidable then show that HALT would be also decidable:

Suppose MACCEPT is a TM deciding ACCEPT.  

Here is a description of a TM deciding HALT:

“Given ⟨M, x⟩, run MACCEPTS(⟨M, x⟩).  If it accepts, then accept.

Reverse the accept & reject states in ⟨M⟩, forming ⟨M/⟩.

Run MACCEPTS(⟨M/, x⟩).  If it accepts (i.e., M rejects x), then accept.

Else reject.”    

New Proof Strategy summarized:

Deciding L is at least as hard as deciding HALT

HALT would be easy if L were easy

HALT reduces to L

HALT ≤T L

New Proof Strategy:

Want to show:

Problem L is undecidable

Reductions

Definition:

Language A reduces to language B means:

“It is possible to decide A using an

algorithm for deciding B as a subroutine.”

Notation:              A ≤T B (T stands for Turing).

Think, “A is no harder than B”.
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Reductions

Fact:

Suppose A ≤T B; i.e., A reduces to B.

If B is decidable, then so is A.

Fact:

Suppose A ≤T B; i.e., A reduces to B.

If A is undecidable, then so is B.

We actually used the contrapositive:

Note that “A ≤T B” is a stronger statement than proving that A is decidable
under the assumption that B is decidable. 

Reductions

Interesting:

We use a positive statement, i.e., the existence of a

reduction algorithm, in order to prove a negative 

(impossibility) result.

Reductions are the main technique

for showing undecidability.

Reductions (HALT ≤T ACCEPT)

Theorem:

HALT ≤T ACCEPT.

Proof:

Suppose MACCEPT is a subroutine deciding ACCEPT.  

Here is a description of a TM deciding HALT:

“Given ⟨M, x⟩, run MACCEPTS(⟨M, x⟩).  If it accepts, then accept.

Reverse the accept & reject states in ⟨M⟩, forming ⟨M/⟩.

Run MACCEPT(⟨M/, x⟩).  If it accepts (i.e., M rejects x), then accept.

Else reject.”    
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More Reductions (ACCEPT ≤T ALL)

Theorem:

ALL = {⟨M⟩ | M accepts all strings} is undecidable.

Proof:  (ACCEPT ≤T ALL)
Suppose MALL is a subroutine deciding ALL.

Here is a description of a TM deciding ACCEPT:

“Given ⟨M, x⟩, write down the description ⟨Mx⟩ of a TM Mx which does this:

“Overwrite the input with x and then run M.”

Call subroutine MALL on input ⟨Mx⟩. Accept if it accepts, reject otherwise”

(Note that Mx behaves the same on all inputs and in particular we have that Mx

accepts all strings if and only if M accepts x.)

More Reductions (ACCEPT ≤T EMPTY)

Theorem:

We also have ACCEPT ≤T EMPTY.

Proof:  (ACCEPT ≤T EMPTY)
Suppose MEMPTY is a subroutine deciding EMPTY.

Here is a description of a TM deciding ACCEPT:

“Given ⟨M, x⟩, write down the description ⟨Mx⟩ of a TM Mx which does this:

“Overwrite the input with x and then run M.”

Call subroutine MEMPTY on input ⟨Mx⟩. Reject if it accepts else reject.”

More Reductions (ALL,EMPTY ≤T EQUIV)

Theorem:

EQUIV = {⟨M,M’⟩ | L(M) = L(M’)} is undecidable.

Proof:  (ALL ≤T EQUIV and EMPTY ≤T EQUIV)
Suppose MEQUIV is a subroutine deciding EQUIV.

Here is a description of a TM deciding ALL:

“Given ⟨M⟩ write down the description ⟨M’⟩ of a TM M’ which always accepts 

/ rejects.

Then call subroutine MEQUIV on input ⟨M,M’⟩.”
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Poll – Test your Intuition

We just showed:

HALT ≤T ACCEPT ≤T EMPTY ≤T EQUIV 

Which of  the following, do you believe also hold?

HALT ≤ EMPTY
HALT ≤ EQUIV

EMPTY ≤ ACCEPT
EQUIV ≤ EMPTY
EQUIV ≤ HALT 

ACCEPT ≤T ALL ≤T EQUIV 

and    

More Reductions (EMPTY ≤T HALT)

Theorem:

HALT, ACCEPT, EMPTY are all equally hard. 

Proof:  (EMPTY ≤T HALT)
Suppose MHALT is a subroutine deciding HALT.

Here is a description of a TM deciding EMPTY:

“Given ⟨M⟩, write down the description ⟨M’⟩ of a TM M’ which does this:

“For t=1 to ∞     

run M on each string of length at most t for t steps

If any execution terminates and accepts then   terminate (+ accept)”

Then call subroutine MHALT on input ⟨M’, ε⟩ but reverse the accept/reject.”

More Undecidability
Theorem:
HALT, ACCEPT, EMPTY are all equally hard. 

What about EQUIV and ALL?
Fun Fact #1:

EQUIV and ALL are harder than HALT and so are 
TOTAL= {⟨M⟩ | M halts on all inputs x}
FINITE = {⟨M⟩ | L(M) is finite}

Fun Fact #2:

There is an infinite hierarchy of harder and harder 

undecidable languages.

and in fact all these problems are equally hard. 
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More Undecidability

How does one define / construct this hierarchy? 

Look at TMs which have a subroutine/oracle that solves

HALT. These oracle TMs can solve ACCEPT and other

equivalent problems easily BUT they cannot decide if 

an oracle TM given to them halts. This makes the

HALTing problem for oracle TMs even harder. …

Fun Fact #2:

There is an infinite hierarchy of harder and harder 

undecidable languages. (which however still only 

covers countably many languages)

Question:

Do all undecidable problems involve TM’s?

Answer:

No! Some very different problems are undecidable!

Cellular Automata

Input:  A CA with its initial configuration.

E.g. a game of life pattern

Theorem:   Deciding whether the input CA loops is an 

undecidable problem.
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Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

E.g.:  
a

ab

a

cabc

bcc

c

Definition:  A match is a sequence of dominoes, 

repetitions allowed, such that 

top string = bottom string.

Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

E.g.:  
a

ab

a

cabc

bcc

c

Match:
a

ab

bcc

c

a

cabc

bcc

c

= abccabcc

= abccabcc

Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

Task:  Output YES if and only if there is a match.

Theorem (Post, 1946):   Undecidable.

There is no algorithm solving this problem.

(More formally, PCP = {⟨Domino Set⟩ : there’s a match}

is an undecidable language.)
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Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

Task:  Output YES if and only if there is a match.

Theorem (Post, 1946):   Undecidable.

Two-second proof sketch:

Given a TM M, you can make a domino set such that

the only matches are execution traces of M which

end in the accepting state. Hence ACCEPTS ≤T PCP.

Wang Tiles

Input:  Finite collection of “Wang Tiles” (squares)

with colors on the edges.      E.g., 

Task:  Output YES if and only if it’s possible to

make an infinite grid from copies of them,

where touching sides must color-match.

Theorem (Berger, 1966):  Undecidable.

Modular Systems

Input:  Finite set of rules of the form

“from ax+b, can derive cx+d”, where a,b,c,d∈ℤ.

Also given is a starting integer u and a target v.

Task:  Decide if v can be derived starting from u.

Theorem (Börger, 1989):  Undecidable.

E.g.:  “from 2x derive x”,  “from 2x+1 derive 6x+4”,

target v = 1.  Starting from u, this is equivalent

to asking if the “3n+1 problem” halts on u.
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Richardson’s Problem

Input:  A set S of rational numbers.

Question:  Can you make an E such that E ≡ 0?

Theorem (Richardson, 1968):  Undecidable.

What you can do:  Make an expression E using

the numbers in S, the numbers π and ln(2), the 

variable x, and operations +, −, ∙, sin, exp, abs.

Mortal Matrices

Input:  Two 21×21 matrices of integers, A & B.

Question:  Is it possible to multiply A and B 

together (multiple times in any order) 

to get the 0 matrix?

Theorem (Halava, Harju, Hirvensalo, 2007):  

Undecidable.

Hilbert’s 10th problem

Input:  Multivariate polynomial w/ integer coeffs.

Question:  Does it have an integer root?

Theorem (1970):  Undecidable.

Matiyasevich  Robinson     Davis      Putnam
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Hilbert’s 10th problem

Input:  Multivariate polynomial w/ integer coeffs.

Question:  Does it have an integer root?

Undecidable.

Question:  Does it have a real root?

Decidable.

Tarski, 1951.

Question:  Does it have a rational root?

Not known if it’s decidable or not.

Definitions:
Halting and other Problems

Theorems/proofs:
Undecidability of HALT
many reduction proofs

Practice:
Diagonalization
Reductions 
Programming with TM’s

Study Guide


