15-251: Great Theoretical Ideas in Computer Science
Fall 2018, Lecture 8

Time Complexity

Dammit l'm mad!

- is a palindrome

In 1993, comedian Demetri Martin took

 a math course at Yale called Fractal Geometry.His final project: a 225-word palindromic poem.

In 1993, noted comedian Demetri Martin took a math course at Yale called Fractal Geometry.

His final project: a 225-word palindromic poem.

What does that have to do with fractals?

I don't know, it's a liberal arts school.

Dammit l'm mad, by Demetri Martin

Dammit I'm mad

Evil is a deed as I live.
God, am I reviled?
I rise, my bed on a sun, I melt.
To be not one man emanating is sad. I piss.
Alas it is so late. Who stops to help? Man, it is hot.
I'm in it.
I tell.
I am not a devil.
I level "Mad Dog".
Ah, say burning is as a deified gulp in my halo of a mired rum tin. I erase many men. Oh, to be man, a sin. Is evil in a clam? In a trap?

No. It is open.
On it I was stuck.
Rats peed on hope. Elsewhere dips a web.
Be still if I fill its ebb.
Ew, a spider ... eh?
We sleep.
Oh no!
Deep, stark cuts saw it in one position. Part animal, can I live? Sin is a name.
Both, one ... my names are in it. Murder?
I'm a fool. A hymn I plug,
Deified as a sign in ruby ash - a goddam level I lived at.
On mail let it in. I'm it.
Oh, sit in ample hot spots.
Oh, wet!
A loss it is alas (sip). I'd assign it a name.
Name not one bottle minus an ode by me:
"Sir, I deliver. I'm a dog."
Evil is a deed as I live.
Dammit I'm mad.

That's nothing.

In 1986, one Lawrence Levine wrote an entire palindromic novel.

It had ~100,000 letters.

Dr. Awkward \& Olson in Oslo by Lawrence Levine

"Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp martyr. Remote liberal ceding is idle - if... heh-heh," Sam X. Xmas murmured in an undertone to tow-trucker Edwards. "Alas. Simple - hot." To didos, no tracks, Ed decided. "Or - eh - trucks abob."

(... 160 pages and 100,000 characters later...)

"Bob, ask Curt. He rode diced desk carton. So did Otto help Miss Alas draw Derek-cur. Two tote? Not red Nun. A nide. Rum. Rum Sam X. Xmas. Heh, heh. Field, I sign. I declare bile to merry tramps. A wasp martyr? No, Sam - live foam or a sage Tahiti Cat."

Suppose you are the proofreader.

You have to check if there's a mistake...

"Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp martyr. Remote liberal ceding is idle - if... heh-heh," Sam X. Xmas murmured in an undertone to tow-trucker Edwards. "Alas. Simple - hot." To didos, no tracks, Ed decided. "Or - eh - trucks abob."

(... 160 pages and 100,000 characters later...)

"Bob, ask Curt. He rode diced desk carton. So did Otto help Miss Alas draw Derek-cur. Two tote? Not red Nun. A nide. Rum. Rum Sam X. Xmas. Heh, heh. Field, I sign. I declare bile to merry tramps. A wasp martyr? No, Sam - live foam or a sage Tahiti Cat."

Want to solve the PALINDROME problem on an instance with $\mathrm{n}=10^{5}$ characters.

Today's lecture:
Defining, discussing, and debating
the words and ideas in the following sentence:

The intrinsic time complexity of solving the PALINDROME problem is $\Theta(n)$.

Where we've been, where we're going

Lecture 1-2: Overview \& Review

Lectures 3-5: Defining computation...

- What is a computational problem?
- What is an algorithm?
- Computability: Which problems can be solved by algorithms, and which can't.

Where we've been, where we're going

- Computability: Which problems can be solved by algorithms, and which can't.

The PALINDROME problem cannot be solved by a wimpy notion of algorithms (DFAs),
but can be solved by the full notion of algorithms
(Turing Machines; equivalently, Python, C, SML...).

Where we've been, where we're going

- Computability: Which problems can be solved by algorithms, and which can't.

Once we know a problem can be solved, in principle, we usually ask about practical computability.

- Complexity: How efficiently various problems can be solved by algorithms.

Complexity: How efficiently various problems can be solved by algorithms.

Interesting Questions:

- Efficiency with respect to what? (Time, space/memory, parallelizability, ...)
- What is the right model/level of abstraction?
- How to show efficient algorithms don't exist?
- "P vs. NP"...

Warning

For computability, the model doesn't matter.
Computability is the same for TMs, C, Python, ...

For complexity, the model does matter.
Not too much, but somewhat.

Today:

8 Great Ideas

in Theoretical Computer Science

Running time of deciding PALINDROME

I stole this picture from the Internet. It doesn't even decide PALINDROME, it decides $\left\{w w^{R}: w\right.$ in $\left.\{a, b\}^{}\right\}$.

How many steps does it take to decide if input x is in language PALINDROME?

Depends on the length of x !

Great Idea \#1:

Measure running time as a function of the input length.

Instance/input length

Usually denoted \bigcap.

PALINDROME: Input is a string x.
$\mathrm{n}=\#$ characters in x .

Instance/input length

Usually denoted

PRIMALITY: Input is a number $\mathrm{B} \in \mathbb{N}^{+}$.
n depends on choice of encoding.
The default is binary (base 2).
Thus $\mathrm{n}=\#$ binary digits $=\quad\left\lceil\log _{2}(\mathrm{~B}+1)\right\rceil$
Sometimes we might sloppily say "\# of digits", and "log(B)".

Instance/input length

Usually denoted \bigcap.

PRIMALITY: Input is a number $B \in \mathbb{N}^{+}$.

$$
n \neq B
$$

This would mean encoding numbers in unary, which is a horrible idea.

Instance/input length

Usually denoted \bigcap.

MuLTIPLICATION: Input is pair of number, $\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$.

$$
\begin{aligned}
\mathrm{n}=\left\lceil\log _{2}\left(\mathrm{~B}_{1}+1\right)\right\rceil & +\left\lceil\log _{2}\left(\mathrm{~B}_{2}+1\right)\right\rceil \\
& +1 \text { (for the delimeter) }
\end{aligned}
$$

Instance/input length

Usually denoted \bigcap.

Warning: Sometimes you'll see it specified that \mathbf{n} is something else.
E.g., for the SORTING problem, it is traditional for \boldsymbol{n} to denote the number of items to be sorted (as opposed to total \# of input bits).

Running time of deciding PALINDROME

*I stole this picture from the Internet.
It doesn't even decide PALINDROME,
it decides $\left\{w w^{R}\right.$: w in $\left.\{a, b\}^{*}\right\}$.

Number of steps to decide if $x \in$ PALINDROME...
Depends on n, the length of x.
Also depends on x itself!

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | ν | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | ν | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | ப | \mathbf{b} | \mathbf{a} | \mathbf{b} | \mathbf{b} | \mathbf{a} | \mathbf{b} | \mathbf{a} | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | a | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | ப | \mathbf{b} | \mathbf{a} | \mathbf{b} | \mathbf{b} | \mathbf{a} | \mathbf{b} | \mathbf{a} | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

Input: ababbaba

Input: ababbaba

Input: ababbaba

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | u | ப | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | u | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

Input: ababbaba

\section*{ | u | b | a | b | b | a | b | u | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

Input: ababbaba

Input: ababbaba

\section*{ | u | u | a | b | b | a | b | u | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

\section*{ | u | u | \mathbf{a} | b | b | a | b | u | u | u | u | u | u | u |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Input: ababbaba

Input: ababbaba

Input: ababbaba

Input: ababbaba

Running time of deciding PALINDROME

Number of steps to decide if $x \in$ PALINDROME...
Depends on n, the length of x.
If x really is a palindrome, \# of TM steps is:

$$
\begin{aligned}
& (n+1)+n+(n-1)+\cdots 3+2+1 \\
= & \frac{(n+1)(n+2)}{2}=\frac{1}{2} n^{2}+\frac{3}{2} n+1
\end{aligned}
$$

If x isn't a palindrome, it depends.
Could take as few as $\mathrm{n}+1$ steps.

Great Idea \#2:

Measure running time as a worst-case
function of the input length.

Defining running time

The running time of algorithm A is a function $\mathrm{T}_{\mathrm{A}}: \mathbb{N} \rightarrow \mathbb{N}$, defined by

$T_{A}(n) \in \max \{\#$ steps A takes on $x\}$ instances x of length n (worst case)

(When A is clear, we often just write $T(n)$.)

Defining running time

The running time of algorithm A is a function $\mathrm{T}_{\mathrm{A}}: \mathbb{N} \rightarrow \mathbb{N}$, defined by

$T_{A}(n)=\max \{\#$ steps A takes on $x\}$ instances x of length n

E.g., our PALINDROME TM had running time...

$$
T(n)=\frac{1}{2} n^{2}+\frac{3}{2} n+1
$$

Why worst case?

Well, we're not dogmatic about it.
Average (random) case, "typical" case,
"smoothed analysis", all interesting too.

Pros of worst-case analysis:

- An ironclad guarantee.
- Matches our worst-case notion of an algorithm solving a problem.
- Hard to define what a 'typical' instance is.
- Random inputs are often not representative of typical inputs.
- Most straightforward way to do analysis.

Great Idea \#3:

When it comes to running time, focus on the "big picture": how it scales as a function of n.

Our Palindrome TM had running time

$$
T(n)=\frac{1}{2} n^{2}+\frac{3}{2} n+1
$$

Our Palindrome TM had running time

$$
T(n)=\frac{1}{2} n^{2}+\frac{3}{2} n+1
$$

- Analogous to "too many significant figures"
- We'll soon study algorithms at a higher level (like, in C, or pseudocode), where it's not even exactly clear what counts as "1" time step
- Even for slightly more complicated algorithms, it's nearly impossible to calculate so precisely

Our Palindrome TM had running time

$$
T(n)=\frac{1}{2} n^{2}+\frac{3}{2} n+1
$$

We want to use the right level of abstraction!

The key takeaway of this $T(n)$: it's "quadratic"; that is, proportional to n^{2}.

This leads us to...

Great Idea \#4:

Big-O notation

INFORMAL Definition

"As n gets large, $T(n)$ is proportional to n^{2}."
$T(n)$ is $\Theta\left(n^{2}\right)$
"As n gets large, $T(n)$ is at most proportional to n^{2}."
$T(n)$ is $O\left(n^{2}\right)$
"As n gets large, $T(n)$ is at least proportional to n^{2}."
$T(n)$ is $\Omega\left(n^{2}\right)$

INFORMAL Definition

$$
\begin{array}{ll}
\text { roughly }= & \Theta(\cdot) \\
\text { roughly } \leq & O(\cdot) \\
\text { roughly } \geq & \Omega(\cdot)
\end{array}
$$

Examples

$$
\begin{array}{ll}
\text { roughly }= & \Theta(\cdot) \\
\text { roughly } \leq & O(\cdot) \\
\text { roughly } \geq & \Omega(\cdot)
\end{array}
$$

Examples

$$
\frac{1}{2} n^{2}+\frac{3}{2} n+1 \quad \text { is } \quad \Theta\left(n^{2}\right)
$$

roughly \geq
$\Omega(\cdot)$

Examples

$$
\begin{array}{lll}
\frac{1}{2} n^{2}+\frac{3}{2} n+1 & \text { is } & \Theta\left(n^{2}\right) \\
\frac{1}{2} n^{2}+\frac{3}{2} n+1 & \text { is } & O\left(n^{3}\right) \\
& \text { is } & O\left(n^{2}\right) \text {, too }
\end{array}
$$

$\Omega(\cdot)$

Examples

$$
\begin{array}{lll}
\frac{1}{2} n^{2}+\frac{3}{2} n+1 & \text { is } & \Theta\left(n^{2}\right) \\
\frac{1}{2} n^{2}+\frac{3}{2} n+1 & \text { is } & O\left(n^{3}\right) \\
& \text { is } & O\left(n^{2}\right), \text { too } \\
\frac{1}{2} n^{2}+\frac{3}{2} n+1 & \text { is } & \Omega(n) \\
& \text { is } & \Omega\left(n^{2}\right), \text { too }
\end{array}
$$

Examples

$6 n^{2}-2 n+5 \quad$ is $\quad \Theta\left(n^{2}\right)$ is not $\Theta\left(n^{3}\right)$

$2 n^{2}-11$
is $\quad O\left(\mathrm{n}^{3}\right)$
is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, too
is not $\mathrm{O}(\mathrm{n})$
$1000 n^{2}$
is $\quad \Omega(n)$
is $\quad \Omega\left(n^{2}\right)$, too

Formal definition of $O\left(n^{2}\right)$

Definition: $T(n)$ is $O\left(n^{2}\right)$ if and only if
\exists positive real C,
\exists positive real n_{0},
such that $\forall \mathrm{n} \geq \mathrm{n}_{0}$ it holds that $\mathrm{T}(\mathrm{n}) \leq \mathrm{Cn}^{2}$.
"Once n is large enough...
$\ldots \mathrm{T}(\mathrm{n})$ is at most a constant factor times n^{2}."

Definition: $T(n)$ is $O\left(n^{2}\right)$ if and only if

\exists positive real C,
\exists positive real n_{0},
such that $\forall n \geq n_{0}$ it holds that $T(n) \leq C n^{2}$.

Example: $\quad \mathrm{T}(\mathrm{n})=3 \mathrm{n}^{2}+10 \mathrm{n}+30$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Why? Take $\mathrm{C}=4 . \quad$ Take $\mathrm{n}_{0}=13$.
Now if $n \geq 13$, then $10 n+30 \leq 10 n+3 n$

$$
=13 n \leq n^{2}
$$

and so $T(n)=3 n^{2}+10 n+30 \leq 3 n^{2}+n^{2}=4 n^{2}$.

Example:

$T(n)=3 n^{2}+10 n+30$ is $O\left(n^{2}\right)$

$T(n)$ is $O\left(n^{2}\right)$ because $T(n) \leq 4 n^{2}$ for $n \geq 13$

Formal definition of $O\left(n^{3}\right)$

Definition: $T(n)$ is $O\left(n^{3}\right)$ if and only if
\exists positive real C,
\exists positive real n_{0},
such that $\forall \mathrm{n} \geq \mathrm{n}_{0}$ it holds that $\mathrm{T}(\mathrm{n}) \leq \mathrm{Cn}^{3}$.
"Once n is large enough...
$\ldots \mathrm{T}(\mathrm{n})$ is at most a constant factor times n^{3}."

Formal definition of $O(g(n))$

Definition: $T(n)$ is $O(g(n))$ if and only if
\exists positive real C,
\exists positive real n_{0},
such that $\forall n \geq n_{0}$ it holds that $T(n) \leq C \cdot g(n)$
"Once n is large enough...
$\ldots \mathrm{T}(\mathrm{n})$ is at most a constant factor times g(n)."

Formal definition of $\Omega\left(\mathrm{n}^{2}\right)$

Definition: $T(n)$ is $\Omega\left(n^{2}\right)$ if and only if
\exists positive real c > 0,
\exists positive real n_{0},
such that $\forall \mathrm{n} \geq \mathrm{n}_{0}$ it holds that $\mathrm{T}(\mathrm{n}) \geq \mathrm{cn}^{2}$
"Once n is large enough...
$\ldots \mathrm{T}(\mathrm{n})$ is at least a constant factor times n^{2}."

Formal definition of $\Omega(\mathrm{g}(\mathrm{n})$)

Definition: $T(n)$ is $\Omega(g(n))$ if and only if
\exists positive real c > 0,
\exists positive real n_{0},
such that $\forall n \geq n_{0}$ it holds that $T(n) \geq c \cdot g(n)$
"Once n is large enough...
$\ldots \mathrm{T}(\mathrm{n})$ is at least a constant factor times g(n)."

Formal definition of $\Theta(\mathrm{g}(\mathrm{n}))$

Definition: $T(n)$ is $\Theta(g(n))$ if and only if

$$
\begin{aligned}
& T(n) \text { is } O(g(n)) \\
& \quad \text { and } \\
& T(n) \text { is } \Omega(g(n)) \text {. }
\end{aligned}
$$

"Once n is large enough...
$\ldots \mathrm{T}(\mathrm{n})$ is within a constant factor of $\mathrm{g}(\mathrm{n})$. ."

Common run-time scaling

$\Theta(\log n)$ "logarithmic"
$\Theta(n)$
"linear"
$\Theta\left(n^{2}\right) \quad$ "quadratic"
$\Theta\left(n^{3}\right) \quad$ "cubic"
$\Theta\left(n^{c}\right) \quad$ "polynomial"
$\Theta\left(2^{n}\right) \quad$ "exponential"
doubling the input size
\Rightarrow doubling the running time
$2 \times$ input size $\Rightarrow 4 \times$ run time
$2 \times$ input size $\Rightarrow 8 \times$ run time
$2 \times$ input size \Rightarrow run time +1
$2 \times$ input size \Rightarrow constant \times run time
$2 \times$ input size \Rightarrow run time squares
steps

A log-log plot

Say 1 step $=1 \mu \mathrm{~s}$

Some functions, each $\mathrm{O}(\cdot)$ of the next

1	n	2^{n}
$\log \left(\log ^{*} n\right)$	$n \log n$	3^{n}
$\log ^{*} n$	n^{2}	$n!$
$\log \log n$	n^{3}	n^{n}
$\log n$	n^{100}	$2^{2^{n}}$
$n / \log n$	$\underbrace{2^{2^{2 \cdot 2^{2}}}}$	$n_{\text {times }}$

Some functions, each $\mathrm{O}(\cdot)$ of the next

fastest known alg. for MULTIPLICATION
$\log \left(\log ^{*} n\right)$ $\log ^{*} n$
$\log \log n$ $\log n$ \sqrt{n}
$n / \log n$

$n \cdot(\log n) \cdot 8^{\log ^{*} n}$

2^{n}
3^{n}
$n!$ n^{n}
$2^{2^{n}}$ $n^{\log n}$
$\underbrace{2^{2^{2^{\cdot 2^{2}}}}}_{n \text { times }}$

Great Idea \#5:

The computation model does make a difference when counting running time.

A picture from Lecture 1

Real World

Computation
TMs maybe not the best model for today's computers

Applications

Suppose you are the proofreader.

You have to check if there's a mistake...

4
"Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp martyr. Remote liberal ceding is idle - if... heh-heh," Sam X. Xmas murmured in an undertone to tow-trucker Edwards. "Alas. Simple - hot." To didos, no tracks, Ed decided.
"Or - eh - trucks abob."

(... 160 pages...)

"Bob, ask Curt. He rode diced desk carton. So did Otto help Miss Alas draw Derek-cur. Two tote? Not red Nun. A nide. Rum. Rum Sam X. Xmas. Heh, heh. Field, I sign. I declare bile to merry tramps. A wasp martyr? No, Sam - live foam or a sage Tahiti Cat."

TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// S[1]...S[n] is a palindrome
$10 \leftarrow 1$
hi $\leftarrow \mathrm{n}$
while (lo < hi)
if S[lo] \neq S[hi] then REJECT
lo \leftarrow lo + 1
hi \leftarrow hi - 1
end while
ACCEPT

Poll: what should the running time be?

TwoFingersPalindromeTest(S, n)

```
// ACCEPT iff string
// S[1]...S[n] is a palindrome
```

$10 \leftarrow 1$
hi $\leftarrow \mathrm{n}$
while
if $S[10] \neq$ S[hi] hen REJECT
$10 \leftarrow-10$
hi \leftarrow hi -
end while
ACCEPT
can you really access far-apart memory cells in "1" step?

TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// S[1]...S[n] is a palindrome
$10 \leftarrow 1$
hi $\leftarrow \mathrm{n}$
while (lo < hi)
if $\mathrm{S}[\mathrm{lo}] \neq \mathrm{S}[\mathrm{hi}]$ then REJECT
$10 \leftarrow 10+1$
hi \leftarrow hi -1
ACCEPT
storing hi requires $\log _{2} n$ bits;
does decrementing take 1 step? $\Theta(\log n)$ steps?

TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// S[1]...S[n] is a palindrome
$10 \leftarrow 1$
hi $\leftarrow \mathrm{n}$
while (lo < hi)
if S[lo] \neq S[hi] then REJECT
$10 \leftarrow 10+1$
hi \leftarrow hi - 1
end while
ACCEPT

TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// S[1]...S[n] is a palindrome
$10 \leftarrow 1$
hi $\leftarrow \mathrm{n}$
while (lo < hi)
if S[lo] \neq S[hi] then REJECT
$10 \leftarrow$ lo + 1
hi \leftarrow hi - 1
end while ACCEPT

This "feels like" it has running time $\Theta(n) . .$.

TwoFingersPalindromeTest(S, n)

```
                // ACCEPT iff string
                    // S[1]...S[n] is a palindrome
lo}\leftarrow
hi}\leftarrow\textrm{n
while (lo < hi)
    if S[lo] f S[hi] then REJECT
    lo \leftarrow lo + 1
    hi \leftarrow hi - 1
end while
ACCEPT
```

Next lecture: We'll discuss a model where this has running time $\Theta(\mathrm{n})$.

Today: Just want to point these issues out...

Great Idea \#6:

Intrinsic complexity
\& beating brute force

Intrinsic complexity

Given a problem, e.g., PALINDROME, we can ask about its intrinsic complexity:

How fast is its fastest algorithm?
(Up to $\Theta(\cdot)$, and fixing the model of computation!)

PALINDROME:

We know an O(n) algorithm, TwoFingers.
Could there be a faster one? E.g., $\quad O(\sqrt{n})$?
Theorem:

Any alg. solving PALINDROME uses $\geq \mathrm{n}-1$ steps.

Proof sketch: Suppose algorithm A solves it using $\leq n-2$ steps.
Let x be the string aaaa $\cdots \mathrm{a}$ (n times), which is a palindrome.
When A runs with input x there must be distinct $1 \leq j_{1}, j_{2} \leq n$ such that A never reads $I\left[j_{1}\right]$ or $I\left[j_{2}\right]$. (Why?)
Let x^{\prime} be the same as x except that $\mathrm{x}\left[\mathrm{j}_{1}\right]=\mathrm{b}$ and $\mathrm{x}\left[\mathrm{j}_{2}\right]=\mathrm{C}$.
When A runs on x^{\prime} it has same behavior as when it runs on x. (Why?)
But A accepts x and rejects x^{\prime} (why?), a contradiction.

PALINDROME:

We know an O(n) algorithm, TwoFingers.
Could there be a faster one? E.g., $\quad O(\sqrt{n})$?
Theorem:
Any alg. solving PALINDROME uses $\geq \mathrm{n}-1$ steps.

Conclusion:
The intrinsic time complexity of PALINDROME is linear;
$\Theta(\mathrm{n})$ time is necessary and sufficient.

MULTIPLICATION:

In grade school you learn an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm.

MULTIPLICATION:

In grade school you learn an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm.

Easy to show $\geq \mathrm{n}$ steps are required:
you at least have to write down the answer!

Is there a faster algorithm?

Yes! A much faster one, we'll see next time...

HAMILTONIAN-CYCLE:

Instance: A connected graph.
Notation: Let 'n' = \# of vertices.
Solution: \quad Yes/No: Is there a "tour"
visiting each vertex exactly once?

Hamiltonian-Cycle:

Brute-force alg:

> Try all tours
> ₹ n! steps
[Held-Karp'70]: Dynamic programming
$\approx 2^{\mathrm{n}}$ steps
[Björklund'10]:
Clever algebraic brute-force
$\approx 1.657^{\mathrm{n}}$ steps

EULERIAN-CYCLE:

Instance: A connected graph.

Notation:
Solution:

Let 'n' = \# of vertices.
Yes/No: Is there a "tour" visiting each edge exactly once?

EULERIAN-CYCLE:

Algorithm E:
Check if every vertex is attached to an even number of other vertices.
If so, output Yes. Else output No.

Euler's Theorem: Alg. E solves Eulerian-Cycle.

Time: $\quad T_{E}(n)=O\left(n^{2}\right)$.

Great Idea \#7:

Polynomial time.

l.e., time $O\left(n^{c}\right)$ for some constant c .

There is something truly magical about the notion of polynomial time.

There is an enormous efficiency chasm between polynomial and exponential time.

HAMILTONIAN-CYCLE:

Seems to require exponential time.
We have no 'good' understanding of which graphs have Hamiltonian cycles.

EULERIAN-CYCLE:
Polynomial time.
Euler's Theorem 'explains' Eulerian cycles.

There is an enormous efficiency chasm between polynomial and exponential time.

HAMILTONIAN-CYCLE:

Seems to require exponential time.
We have no 'good' understanding of which graphs have Hamiltonian cycles.

EULERIAN-CYCLE:
Polynomial time.
Euler's Theorem 'explains' Eulerian cycles.

There is an enormous understanding chasm between polynomial and exponential time.

Common progress paradigm for a problem

Brute force algorithm: Exponential time
what we care about most in 15-251

Algorithmic breakthrough: Polynomial time
what we care about more in 15-451
!
Blood, sweat, and tears: Nearly linear time

Does "polynomial time" imply "efficient"?

$\Theta(\mathrm{n}) \quad$ Efficient (unless the constant is insane...)
$\Theta(\mathbf{n} \log \mathbf{n}) \quad$ Efficient.
$\Theta\left(n^{2}\right) \quad$ Kind of efficient.

Distinction depends on your exact model.
$\Theta\left(n^{3}\right) \quad$ Barely efficient?
$\Theta\left(n^{100}\right) \quad$ Not efficient. But it almost never arises.

It's a negatable benchmark:
"Not polynomial time" pretty much implies "not efficient".

Polynomial time

50 years of computer science experience shows it's a very compelling definition:

- A necessary first step towards truly efficient algorithms, associated with "beating brute-force"
- Very robust to notion of what is an elementary step.
- Easy to work with: Plug a poly-time subroutine into a poly-time algorithm: still poly-time.
- Empirically, it seems that most natural problems with poly-time algorithms also have efficient-in-practice algorithms.

Great Idea \#8:

The Strong Church-Turing Thesis

All 'reasonable' models of step-counting for 'algorithms' are polynomially equivalent.

The Strong Church-Turing Thesis

Suggested by decades of computer science experience.

E.g., it's not hard to show that

Turing Machines can simulate "C / python-style" algorithms/step-counting with at most polynomial slowdown, \& vice versa.

The Strong Church-Turing Thesis

Challenger from the 1970s:
Randomized computation.
Give the model the ability to generate random bits.

In light of research from 1980s...
We believe (can't prove) that the Strong Church-Turing Thesis holds true even with randomized computation.

The Strong Church-Turing Thesis

Challenger from the 1980s:
Quantum computation (Lecture 24).
Allow "qubits" in quantum superposition.

In light of research from 1990s...
We believe (can't prove) that the Strong Church-Turing Thesis is not true.

Great Idea \#8:

The Strong Church-Turing Thesis

> All 'reasonable' models of step-counting for 'algorithms' are polynomially equivalent.

Sometimes Great Ideas are wrong!
Challenge all ideas!

Definitions:

Study Guide

Running time complexity.
Big $\mathrm{O}, \Theta, \Omega$

Practice:
Analyzing time complexity of TMs
Proving $T(n)$ is $O(g(n))$ or $\Theta(g(n)), \Omega(g(n))$
Proving $T(n)$ is not $\mathrm{O}(\mathrm{g}(\mathrm{n})$),

