
15-251: Great Theoretical Ideas in Computer Science

Time Complexity

Fall 2018, Lecture 8

Dammit I’m mad!
– is a palindrome

In 1993, comedian Demetri Martin took
a math course at Yale called Fractal Geometry.

His final project: a 225-word palindromic poem.

His final project: a 225-word palindromic poem.

What does that have to do with fractals?

I don’t know, it’s a liberal arts school.

In 1993, noted comedian Demetri Martin took
a math course at Yale called Fractal Geometry.

Dammit I'm mad
Evil is a deed as I live.

God, am I reviled?
I rise, my bed on a sun, I melt.

To be not one man emanating is sad. I piss.
Alas it is so late. Who stops to help? Man, it is hot.

I'm in it.
I tell.

I am not a devil.
I level "Mad Dog".

Ah, say burning is as a deified gulp
in my halo of a mired rum tin.

I erase many men. Oh, to be man, a sin.
Is evil in a clam? In a trap?

No. It is open.
On it I was stuck.

Rats peed on hope.
Elsewhere dips a web.
Be still if I fill its ebb.
Ew, a spider ... eh?

We sleep.

Oh no!
Deep, stark cuts saw it in one position.
Part animal, can I live? Sin is a name.

Both, one ... my names are in it. Murder?
I'm a fool. A hymn I plug,

Deified as a sign in ruby ash - a goddam level I lived at.

On mail let it in. I'm it.
Oh, sit in ample hot spots.

Oh, wet!
A loss it is alas (sip). I'd assign it a name.
Name not one bottle minus an ode by me:

"Sir, I deliver. I'm a dog."
Evil is a deed as I live.

Dammit I'm mad.

Dammit I’m mad, by Demetri Martin

That’s nothing.

In 1986, one Lawrence Levine wrote

an entire palindromic novel.

It had ~100,000 letters.

“Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp
martyr. Remote liberal ceding is idle — if... heh-heh,”
Sam X. Xmas murmured in an undertone to tow-trucker Edwards.
“Alas. Simple — hot." To didos, no tracks, Ed decided.
“Or — eh — trucks abob.”

Dr. Awkward & Olson in Oslo
by Lawrence Levine

“Bob, ask Curt. He rode diced desk carton. So did Otto help
Miss Alas draw Derek-cur. Two tote? Not red Nun. A nide. Rum.
Rum Sam X. Xmas. Heh, heh. Field, I sign. I declare bile to
merry tramps. A wasp martyr? No, Sam — live foam or a sage
Tahiti Cat.”

(…160 pages and 100,000 characters later…)

“Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp
martyr. Remote liberal ceding is idle — if... heh-heh,”
Sam X. Xmas murmured in an undertone to tow-trucker Edwards.
“Alas. Simple — hot." To didos, no tracks, Ed decided.
“Or — eh — trucks abob.”

Suppose you are the proofreader.

“Bob, ask Curt. He rode diced desk carton. So did Otto help
Miss Alas draw Derek-cur. Two tote? Not red Nun. A nide. Rum.
Rum Sam X. Xmas. Heh, heh. Field, I sign. I declare bile to
merry tramps. A wasp martyr? No, Sam — live foam or a sage
Tahiti Cat.”

You have to check if there’s a mistake…

(…160 pages and 100,000 characters later…)

Want to solve the PALINDROME problem on an

instance with n = 105 characters.

The intrinsic time complexity

of solving the PALINDROME problem is ϴ(n).

Today’s lecture:

Defining, discussing, and debating

the words and ideas in the following sentence:

Where we’ve been, where we’re going

Lecture 1-2: Overview & Review

Lectures 3–5: Defining computation…

• What is a computational problem?

• What is an algorithm?

• Computability: Which problems can

be solved by algorithms, and which can’t.

Where we’ve been, where we’re going

• Computability: Which problems can

be solved by algorithms, and which can’t.

The PALINDROME problem cannot be solved

by a wimpy notion of algorithms (DFAs),

but can be solved by the full notion of algorithms

(Turing Machines; equivalently, Python, C, SML…).

Where we’ve been, where we’re going

• Computability: Which problems can

be solved by algorithms, and which can’t.

Once we know a problem can be solved, in principle,

we usually ask about practical computability.

• Complexity: How efficiently various

problems can be solved by algorithms.

• Complexity: How efficiently various

problems can be solved by algorithms.

• Efficiency with respect to what?
(Time, space/memory, parallelizability, …)

• What is the right model/level of abstraction?

• How to show efficient algorithms don’t exist?

• “P vs. NP”…

Interesting Questions:

Warning

For computability, the model doesn’t matter.

Computability is the same for TMs, C, Python, …

For complexity, the model does matter.

Not too much, but somewhat.

8 Great Ideas

in Theoretical Computer Science

Today:

Running time of deciding PALINDROME

*I stole this picture from the Internet.

It doesn’t even decide PALINDROME,

it decides {wwR : w in {a,b}*}.

How many steps does it take to decide if

input x is in language PALINDROME?

Depends on the length of x!

Measure running time as a

function of the input length.

Great Idea #1:

Instance/input length

Usually denoted .

PALINDROME: Input is a string x.

n = # characters in x.

Instance/input length

PRIMALITY: Input is a number B +.

n depends on choice of encoding.

The default is binary (base 2).

Thus n = # binary digits =

Sometimes we might sloppily say

“# of digits”, and “log(B)”.

Usually denoted .

Instance/input length

PRIMALITY: Input is a number B +.

Usually denoted .

n ≠ B

This would mean encoding numbers in unary,

which is a horrible idea.

Instance/input length

MULTIPLICATION: Input is pair of number, (B1,B2).

n =

Usually denoted .

+ 1 (for the delimeter)

Instance/input length

Warning: Sometimes you’ll see it specified

that n is something else.

E.g., for the SORTING problem, it is

traditional for n to denote the

number of items to be sorted

(as opposed to total # of input bits).

Usually denoted .

Running time of deciding PALINDROME

*I stole this picture from the Internet.

It doesn’t even decide PALINDROME,

it decides {wwR : w in {a,b}*}.

Number of steps to decide if x PALINDROME…

Depends on n, the length of x.

Also depends on x itself!

a b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b a

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

b a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

q0

qrejectqaccept

q1

qrightqleft

qdone?

0,1 ↦ R

⊔,# ↦ L

#

0,1 ↦ L

Input: ababbaba

a b b a b

Running time of deciding PALINDROME

Number of steps to decide if x PALINDROME…

Depends on n, the length of x.

If x really is a palindrome, # of TM steps is:

(n+1) + n + (n−1) + ∙ ∙ ∙ 3 + 2 + 1

If x isn’t a palindrome, it depends.

Could take as few as n+1 steps.

Measure running time as a

worst-case

function of the input length.

Great Idea #2:

Defining running time

The running time of algorithm A is

a function TA : → , defined by

TA(n) = max {# steps A takes on x}
instances x
of length n (worst case)

(When A is clear, we often just write T(n).)

Defining running time

The running time of algorithm A is

a function TA : → , defined by

TA(n) = max {# steps A takes on x}
instances x
of length n

E.g., our PALINDROME TM had running time…

Why worst case?

Well, we’re not dogmatic about it.

Average (random) case, “typical” case,

“smoothed analysis”, all interesting too.

Pros of worst-case analysis:

• An ironclad guarantee.

• Matches our worst-case notion of an algorithm solving a problem.

• Hard to define what a ‘typical’ instance is.

• Random inputs are often not representative of typical inputs.

• Most straightforward way to do analysis.

Great Idea #3:

When it comes to running time,

focus on the “big picture”:

how it scales as a function of n.

Our Palindrome TM had running time

Wow, TMI

Our Palindrome TM had running time

• Analogous to “too many significant figures”

• We’ll soon study algorithms at a higher level

(like, in C, or pseudocode), where it’s not even

exactly clear what counts as “1” time step

• Even for slightly more complicated algorithms,

it’s nearly impossible to calculate so precisely

Our Palindrome TM had running time

We want to use the right level of abstraction!

The key takeaway of this T(n):

it’s “quadratic”; that is, proportional to n2.

This leads us to…

Great Idea #4:

Big-O notation

INFORMAL Definition

“As n gets large, T(n) is

proportional to n2.”
T(n) is ϴ(n2)

“As n gets large, T(n) is

at most proportional to n2.”
T(n) is O(n2)

“As n gets large, T(n) is

at least proportional to n2.”
T(n) is Ω(n2)

INFORMAL Definition

ϴ(∙)

roughly ≤

roughly ≥

roughly =

O(∙)

Ω(∙)

Examples

roughly ≤

roughly ≥

O(∙)

Ω(∙)

ϴ(∙)roughly =

Examples

roughly ≤

roughly ≥

O(∙)

Ω(∙)

is not ϴ(n2)

Examples

roughly ≥ Ω(∙)

is not ϴ(n2)

is not O(n3)

is not O(n2), too

Examples

is not ϴ(n2)

is not O(n3)

is not O(n2), too

is not Ω(n)

is not Ω(n2), too

Examples

is not ϴ(n2)

is not O(n3)

is not O(n2), too

is not Ω(n)

is not Ω(n2), too

is not ϴ(n3)

is not O(n)

Formal definition of O(n2)

Definition: T(n) is O(n2) if and only if

positive real C,

positive real n0,

such that n ≥ n0 it holds that T(n) ≤ Cn2.

…T(n) is at most a constant

factor times n2.”

“Once n is large enough…

Example: T(n) = 3n2 + 10n + 30 is O(n2)

Take C = 4. Take n0 = 13.Why?

Definition: T(n) is O(n2) if and only if

positive real C,

positive real n0,

such that n ≥ n0 it holds that T(n) ≤ Cn2.

Now if n ≥ 13, then 10n + 30 ≤ 10n + 3n

= 13n ≤ n2

and so T(n) = 3n2 + 10n + 30 ≤ 3n2 + n2 = 4n2.

n

T(n)

n2

4 n2

13

T(n) is O(n2) because T(n) ≤ 4n2 for n ≥ 13

Example: T(n) = 3n2 + 10n + 30 is O(n2)

Formal definition of O(n3)

Definition: T(n) is O(n3) if and only if

positive real C,

positive real n0,

such that n ≥ n0 it holds that T(n) ≤ Cn3.

…T(n) is at most a constant

factor times n3.”

“Once n is large enough…

Formal definition of O(g(n))

Definition: T(n) is O(g(n)) if and only if

positive real C,

positive real n0,

such that n ≥ n0 it holds that T(n)≤C∙g(n)

…T(n) is at most a constant

factor times g(n).”

“Once n is large enough…

Formal definition of Ω(n2)

Definition: T(n) is Ω(n2) if and only if

positive real c > 0,

positive real n0,

such that n ≥ n0 it holds that T(n) ≥ cn2

…T(n) is at least a constant

factor times n2.”

“Once n is large enough…

Formal definition of Ω(g(n))

Definition: T(n) is Ω(g(n)) if and only if

positive real c > 0,

positive real n0,

such that n ≥ n0 it holds that T(n)≥c∙g(n)

…T(n) is at least a constant

factor times g(n).”

“Once n is large enough…

Formal definition of ϴ(g(n))

Definition: T(n) is ϴ(g(n)) if and only if

T(n) is O(g(n))

and

T(n) is Ω(g(n)).

…T(n) is within a constant factor of g(n).”

“Once n is large enough…

Common run-time scaling

Θ(n)
doubling the input size

doubling the running time“linear”

Θ(n2) 2× input size 4× run time“quadratic”

Θ(n3) 2× input size 8× run time“cubic”

Θ(nc) 2× input size constant × run time“polynomial”

Θ(2n) 2× input size run time squares“exponential”

Θ(logn) “logarithmic” 2× input size run time +1

n

steps

n2

n

100

2n
3n
4n

n

μs

Say 1 step = 1 μs

A log-log plot

age of universe

one year

one hour

one sec

108

1016

108104

n

n2

2n

n3

n!

Some functions, each O(·) of the next

n

n log n

n2

n3

n100

nlog n

2n

n!

nn

3n

n / log n

log n

log log n

1

log*n

inverse function of

log (log*n)

Some functions, each O(·) of the next

n

n log n

n2

n3

n100

nlog n

2n

n!

nn

3n

n / log n

log n

log log n

1

log*n

log (log*n)

n · (log n) · 8log*n
fastest known alg.

for MULTIPLICATION

The computation model does

make a difference when

counting running time.

Great Idea #5:

A picture from Lecture 1

Real World Abstract World

Computation Mathematical

model

Explore

consequences
Applications

TMs maybe not the best
model for today’s computers

“Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp
martyr. Remote liberal ceding is idle — if... heh-heh,”
Sam X. Xmas murmured in an undertone to tow-trucker Edwards.
“Alas. Simple — hot." To didos, no tracks, Ed decided.
“Or — eh — trucks abob.”

“Bob, ask Curt. He rode diced desk carton. So did Otto help
Miss Alas draw Derek-cur. Two tote? Not red Nun. A nide. Rum.
Rum Sam X. Xmas. Heh, heh. Field, I sign. I declare bile to
merry tramps. A wasp martyr? No, Sam — live foam or a sage
Tahiti Cat.”

(…160 pages…)

Suppose you are the proofreader.

You have to check if there’s a mistake…

TwoFingersPalindromeTest(S,n)
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)

if S[lo] ≠ S[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end while
ACCEPT

Poll: what should the running time be?

TwoFingersPalindromeTest(S,n)
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)

if S[lo] ≠ S[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end while
ACCEPT

can you really access far-apart

memory cells in “1” step?

TwoFingersPalindromeTest(S,n)
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)

if S[lo] ≠ S[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end while
ACCEPT

storing hi requires log2n bits;

does decrementing take 1 step? ϴ(log n) steps?

TwoFingersPalindromeTest(S,n)
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)

if S[lo] ≠ S[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end while
ACCEPT

TwoFingersPalindromeTest(S,n)
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)

if S[lo] ≠ S[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end while
ACCEPT

This “feels like” it has

running time ϴ(n)…

TwoFingersPalindromeTest(S,n)
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)

if S[lo] ≠ S[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end while
ACCEPT

Next lecture: We’ll discuss a model where

this has running time ϴ(n).

Today: Just want to point these issues out…

Intrinsic complexity

& beating brute force

Great Idea #6:

Intrinsic complexity

(Up to ϴ(∙), and fixing the model of computation!)

Given a problem, e.g., PALINDROME,

we can ask about its intrinsic complexity:

How fast is its fastest algorithm?

PALINDROME:

We know an O(n) algorithm, TwoFingers.

Could there be a faster one? E.g.,

Theorem:

Any alg. solving PALINDROME uses ≥ n−1 steps.

Proof sketch: Suppose algorithm A solves it using ≤ n−2 steps.

Let x be the string aaaa···a (n times), which is a palindrome.

When A runs with input x there must be distinct 1 ≤ j1,j2 ≤ n

such that A never reads I[j1] or I[j2]. (Why?)

Let x’ be the same as x except that x[j1]=b and x[j2]=c.

When A runs on x’ it has same behavior as when it runs on x. (Why?)

But A accepts x and rejects x’ (why?), a contradiction.

PALINDROME:

We know an O(n) algorithm, TwoFingers.

Could there be a faster one? E.g.,

Theorem:

Any alg. solving PALINDROME uses ≥ n−1 steps.

Conclusion:

The intrinsic time complexity of PALINDROME is

linear;

Θ(n) time is necessary and sufficient.

MULTIPLICATION:

In grade school you learn an O(n2) algorithm.

□□□□□□□□

× □□□□□□□□

□□□□□□□□

□□□□□□□□

· · · ·

+ □□□□□□□□

= □□□□□□□□□□□□□□□□

MULTIPLICATION:

In grade school you learn an O(n2) algorithm.

Easy to show ≥ n steps are required:

you at least have to write down the answer!

Is there a faster algorithm?

Yes! A much faster one, we’ll see next time...

HAMILTONIAN-CYCLE:

Instance: A connected graph.

Notation: Let ‘n’ = # of vertices.

Solution: Yes/No: Is there a “tour”

visiting each vertex exactly once?

HAMILTONIAN-CYCLE:

Brute-force alg: Try all tours

≈ n! steps

[Held-Karp’70]: Dynamic programming

≈ 2n steps

[Björklund’10]: Clever algebraic brute-force

≈ 1.657n steps

EULERIAN-CYCLE:

Instance: A connected graph.

Notation: Let ‘n’ = # of vertices.

Solution: Yes/No: Is there a “tour”

visiting each edge exactly once?

EULERIAN-CYCLE:

Algorithm E:

Check if every vertex is attached to an

even number of other vertices.

If so, output Yes. Else output No.

Euler’s Theorem: Alg. E solves EULERIAN-CYCLE.

Time: TE(n) = O(n2).

Polynomial time.

Great Idea #7:

I.e., time O(nc) for some constant c.

There is something truly magical about the

notion of polynomial time.

n

μs age of universe

one year

one hour

one sec

108

1016

108104

n

n2

2n

n3

n!

There is an enormous efficiency chasm

between polynomial and exponential time.

HAMILTONIAN-CYCLE:

EULERIAN-CYCLE:

Seems to require exponential time.

We have no ‘good’ understanding of

which graphs have Hamiltonian cycles.

Polynomial time.

Euler’s Theorem ‘explains’ Eulerian cycles.

There is an enormous efficiency chasm

between polynomial and exponential time.

There is an enormous understanding chasm

between polynomial and exponential time.

HAMILTONIAN-CYCLE:

EULERIAN-CYCLE:

Seems to require exponential time.

We have no ‘good’ understanding of

which graphs have Hamiltonian cycles.

Polynomial time.

Euler’s Theorem ‘explains’ Eulerian cycles.

Common progress paradigm for a problem

Brute force algorithm: Exponential time

Algorithmic breakthrough: Polynomial time

Blood, sweat, and tears: Nearly linear time

usually the ‘magic’
happens here

what we care about
most in 15-251

what we care about
more in 15-451

Does “polynomial time” imply “efficient”?

Θ(n)

Θ(n log n)

Θ(n2)

Θ(n3)

Θ(n100)

Efficient (unless the constant is insane…)

Efficient.

Kind of efficient.

Barely efficient?

Not efficient. But it almost never arises.

Distinction depends

on your exact model.

It’s a negatable benchmark:

“Not polynomial time” pretty much

implies “not efficient”.

Polynomial time

50 years of computer science experience

shows it’s a very compelling definition:

• A necessary first step towards truly efficient

algorithms, associated with “beating brute-force”

• Very robust to notion of what is an elementary step.

• Easy to work with: Plug a poly-time subroutine

into a poly-time algorithm: still poly-time.

• Empirically, it seems that most natural

problems with poly-time algorithms also

have efficient-in-practice algorithms.

All ‘reasonable’ models of

step-counting for ‘algorithms’

are polynomially equivalent.

Great Idea #8:

The Strong Church−Turing Thesis

The Strong Church−Turing Thesis

E.g., it’s not hard to show that

Turing Machines can simulate “C / python-style”

algorithms/step-counting with at most

polynomial slowdown, & vice versa.

Suggested by decades of computer

science experience.

The Strong Church−Turing Thesis

In light of research from 1980s…

We believe (can’t prove) that the

Strong Church−Turing Thesis holds

true even with randomized computation.

Challenger from the 1970s:

Randomized computation.

Give the model the ability to

generate random bits.

The Strong Church−Turing Thesis

In light of research from 1990s…

We believe (can’t prove) that the

Strong Church−Turing Thesis is not true.

Challenger from the 1980s:

Quantum computation (Lecture 24).

Allow “qubits” in quantum superposition.

All ‘reasonable’ models of

step-counting for ‘algorithms’

are polynomially equivalent.

Great Idea #8:

The Strong Church−Turing Thesis

Sometimes Great Ideas are wrong!

Challenge all ideas!

Definitions:

Running time
complexity.

Big O, ϴ, Ω

Practice:

Analyzing time
complexity of TMs

Proving T(n) is O(g(n))
or ϴ(g(n)), Ω(g(n))

Proving T(n) is not
O(g(n)),

Study Guide

