Dammit I’m mad!
– is a palindrome
In 1993, comedian Demetri Martin took a math course at Yale called *Fractal Geometry*.

His final project: a 225-word palindromic poem.
In 1993, noted comedian Demetri Martin took a math course at Yale called *Fractal Geometry*.

His final project: a 225-word palindromic poem.

What does that have to do with fractals?

I don’t know, it’s a liberal arts school.
Dammit I’m mad, by Demetri Martin

Dammit I'm mad
Evil is a deed as I live.
God, am I reviled?
I rise, my bed on a sun, I melt.
To be not one man emanating is sad. I piss.
Alas it is so late. Who stops to help? Man, it is hot.

I'm in it.
I tell.
I am not a devil.
I level "Mad Dog".

Ah, say burning is as a deified gulp
in my halo of a mired rum tin.
I erase many men. Oh, to be man, a sin.
Is evil in a clam? In a trap?
No. It is open.
On it I was stuck.

Rats peed on hope.
Elsewhere dips a web.
Be still if I fill its ebb.
Ew, a spider ... eh?
We sleep.

Oh no!
Deep, stark cuts saw it in one position.
Part animal, can I live? Sin is a name.
Both, one ... my names are in it. Murder?
I'm a fool. A hymn I plug,
Deified as a sign in ruby ash - a goddam level I lived at.

On mail let it in. I'm it.
Oh, sit in ample hot spots.
Oh, wet!
A loss it is alas (sip). I'd assign it a name.
Name not one bottle minus an ode by me:
"Sir, I deliver. I'm a dog."
Evil is a deed as I live.
Dammit I'm mad.
That’s nothing.

In 1986, one Lawrence Levine wrote an entire palindromic novel. It had ~100,000 letters.

(...160 pages and 100,000 characters later...)

Suppose you are the proofreader.
You have to check if there’s a mistake…

(...160 pages and 100,000 characters later…)

Want to solve the PALINDROME problem on an instance with $n = 10^5$ characters.

Today’s lecture:
Defining, discussing, and debating the words and ideas in the following sentence:

The intrinsic time complexity of solving the PALINDROME problem is $\Theta(n)$.
Where we’ve been, where we’re going

Lecture 1-2: Overview & Review

Lectures 3–5: Defining computation…

• What is a computational problem?
• What is an algorithm?
• Computability: Which problems can be solved by algorithms, and which can’t.
Where we’ve been, where we’re going

• **Computability:** Which problems can be solved by algorithms, and which can’t.

 The **PALINDROME** problem *cannot* be solved by a wimpy notion of algorithms (DFAs), but *can* be solved by the full notion of algorithms (Turing Machines; equivalently, Python, C, SML…).
Where we’ve been, where we’re going

- **Computability**: Which problems *can* be solved by algorithms, and which can’t.

Once we know a problem *can* be solved, in *principle*, we usually ask about *practical* computability.

- **Complexity**: How *efficiently* various problems can be solved by algorithms.
Complexity: How *efficiently* various problems can be solved by algorithms.

Interesting Questions:

- Efficiency with respect to what? *(Time, space/memory, parallelizability, …)*
- What is the right model/level of abstraction?
- How to show efficient algorithms *don’t* exist?
- “P vs. NP”…
Warning

For computability, the model doesn’t matter. Computability is the same for TMs, C, Python, …

For complexity, the model does matter. Not too much, but somewhat.
Today:

8 Great Ideas
in Theoretical Computer Science
How many steps does it take to decide if input x is in language PALINDROME?

Depends on the length of x!
Great Idea #1:

Measure running time as a function of the input length.
Instance/input length

Usually denoted n.

PALINDROME: Input is a string x.

$n = \# \text{ characters in } x.$
Instance/input length

Usually denoted n.

Primality: Input is a number $B \in \mathbb{N}^+$. n depends on choice of encoding. The default is binary (base 2). Thus $n = \# \text{ binary digits} = \lfloor \log_2(B + 1) \rfloor$

Sometimes we might sloppily say “# of digits”, and “log(B)”.
Instance/input length

Usually denoted n.

Primality: Input is a number $B \in \mathbb{N}^+$.

$n \neq B$

This would mean encoding numbers in unary, which is a horrible idea.
Instance/input length

Usually denoted n.

MULTIPLICATION: Input is pair of number, (B_1,B_2).

$$n = \lfloor \log_2 (B_1 + 1) \rfloor + \lfloor \log_2 (B_2 + 1) \rfloor + 1 \text{ (for the delimiter)}$$
Usually denoted n.

Warning: Sometimes you’ll see it specified that n is something else.

E.g., for the **SORTING** problem, it is traditional for n to denote the number of items to be sorted (as opposed to total # of input bits).
Running time of deciding PALINDROME

Number of steps to decide if \(x \in \text{PALINDROME} \ldots \)

Depends on \(n \), the length of \(x \).

Also depends on \(x \) itself!

* I stole this picture from the Internet. It doesn’t even decide PALINDROME, it decides \(\{ww^R : w \in \{a,b\}^*\} \).
Input: ababbaba
Input: ababbababa
Input: \textit{ababbaba}
Input: ababbaba
Input: \textit{ababbaba}
Input: ababbaba

\[
\begin{array}{c}
\uparrow \ b \ a \ b \ b \ a \ b \ a \\
a \ b \ a \ b \ b \ a \ b \ a \\
\uparrow \ u \ u \ u \ u \ u \ u \ u \ u \ u \ u \ u
\end{array}
\]
Input: ababbaba
Input: ababbaba

\[
\begin{array}{cccccccccccc}
\uparrow & b & a & b & b & b & a & b & a & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow
\end{array}
\]
Input: ababbaba
Input: ababbaba
Input: ababbababa
Input: \textit{ababbaba}
Input: \textit{ababbaba}
Input: ababbaba
Input: $ababbbaba$
Input: ababbaba
Input: ababbaba
Input: ababbaba
Input: ababbaba
Input: ababbaba
Input: ababbaba
Input: ababbaba
Input: ababbababa
Input: ababbaba
Input: ababbaba
Running time of deciding \textsc{Palindrome}

Number of steps to decide if \(x \in \textsc{Palindrome} \ldots \)

Depends on \(n \), the length of \(x \).

If \(x \) really is a palindrome, # of TM steps is:

\[
\begin{align*}
(n+1) + n + (n-1) + \cdots + 3 + 2 + 1 \\
= \frac{(n+1)(n+2)}{2} = \frac{1}{2}n^2 + \frac{3}{2}n + 1
\end{align*}
\]

If \(x \) isn’t a palindrome, it depends.
Could take as few as \(n+1 \) steps.
Great Idea #2:

Measure running time as a \textit{worst-case} function of the input length.
Defining running time

The running time of algorithm A is a function $T_A : \mathbb{N} \rightarrow \mathbb{N}$, defined by

$$T_A(n) = \max \{ \text{# steps } A \text{ takes on } x \}$$

instances x of length n (worst case)

(When A is clear, we often just write $T(n)$.)
The running time of algorithm A is a function $T_A : \mathbb{N} \to \mathbb{N}$, defined by

$$T_A(n) = \max \{\# \text{ steps } A \text{ takes on } x\} \text{ instances } x \text{ of length } n$$

E.g., our PALINDROME TM had running time...

$$T(n) = \frac{1}{2}n^2 + \frac{3}{2}n + 1$$
Why worst case?

Well, we’re not dogmatic about it.

Average (random) case, “typical” case, “smoothed analysis”, all interesting too.

Pros of worst-case analysis:

• An ironclad guarantee.
• Matches our worst-case notion of an algorithm solving a problem.
• Hard to define what a ‘typical’ instance is.
• Random inputs are often not representative of typical inputs.
• Most straightforward way to do analysis.
Great Idea #3:

When it comes to running time, focus on the “big picture”: how it *scales* as a function of n.
Our Palindrome TM had running time

\[T(n) = \frac{1}{2} n^2 + \frac{3}{2} n + 1 \]
Our Palindrome TM had running time

\[T(n) = \frac{1}{2} n^2 + \frac{3}{2} n + 1 \]

- Analogous to “too many significant figures”
- We’ll soon study algorithms at a higher level (like, in C, or pseudocode), where it’s not even exactly clear what counts as “1” time step
- Even for slightly more complicated algorithms, it’s nearly impossible to calculate so precisely
Our Palindrome TM had running time

\[T(n) = \frac{1}{2} n^2 + \frac{3}{2} n + 1 \]

We want to use the right level of abstraction!

The key takeaway of this \(T(n) \):

it’s “quadratic”; that is, proportional to \(n^2 \).

This leads us to…
Great Idea #4:

Big-O notation
INFORMAL Definition

“As n gets large, T(n) is proportional to \(n^2 \).” \(T(n) \) is \(\Theta(n^2) \)

“As n gets large, T(n) is at most proportional to \(n^2 \).” \(T(n) \) is \(O(n^2) \)

“As n gets large, T(n) is at least proportional to \(n^2 \).” \(T(n) \) is \(\Omega(n^2) \)
INFORMAL Definition

roughly \leq \Theta(\cdot)

roughly \leq \Omega(\cdot)

roughly \geq \Omega(\cdot)
Examples

\[\text{roughly } \leq \Theta(\cdot)\]

\[\text{roughly } \leq O(\cdot)\]

\[\text{roughly } \geq \Omega(\cdot)\]
Examples

\[\frac{1}{2} n^2 + \frac{3}{2} n + 1 \quad \text{is} \quad \Theta(n^2) \]

\[\text{roughly} \quad \lesssim \quad O(\cdot) \]

\[\text{roughly} \quad \gtrsim \quad \Omega(\cdot) \]
Examples

\[\frac{1}{2} n^2 + \frac{3}{2} n + 1 \] is \(\Theta(n^2) \)

\[\frac{1}{2} n^2 + \frac{3}{2} n + 1 \] is \(O(n^3) \)

is \(O(n^2) \), too

roughly \(\geq \) \(\Omega(\cdot) \)
Examples

\[\frac{1}{2} n^2 + \frac{3}{2} n + 1 \quad \text{is} \quad \Theta(n^2) \]

\[\frac{1}{2} n^2 + \frac{3}{2} n + 1 \quad \text{is} \quad O(n^3) \]
\[\text{is} \quad O(n^2), \text{ too} \]

\[\frac{1}{2} n^2 + \frac{3}{2} n + 1 \quad \text{is} \quad \Omega(n) \]
\[\text{is} \quad \Omega(n^2), \text{ too} \]
Examples

<table>
<thead>
<tr>
<th>Expression</th>
<th>Big O Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6n^2 - 2n + 5$</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td></td>
<td>is not $\Theta(n^3)$</td>
</tr>
<tr>
<td>$2n^2 - 11$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td></td>
<td>is $O(n^2)$, too</td>
</tr>
<tr>
<td></td>
<td>is not $O(n)$</td>
</tr>
<tr>
<td>$1000n^2$</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td></td>
<td>is $\Omega(n^2)$, too</td>
</tr>
</tbody>
</table>
Formal definition of \(O(n^2)\)

Definition: \(T(n)\) is \(O(n^2)\) if and only if

\[
\exists \text{ positive real } C, \\
\forall \text{ positive real } n_0, \\
such \text{ that } \forall \ n \ge n_0 \ \text{it holds that } T(n) \le Cn^2 .
\]

“Once \(n\) is large enough…

\(T(n)\) is at most a constant factor times \(n^2\).”
Definition: \(T(n) \) is \(O(n^2) \) if and only if

\[\exists \text{ positive real } C, \]
\[\exists \text{ positive real } n_0, \]

such that \(\forall n \geq n_0 \) it holds that \(T(n) \leq Cn^2 \).

Example: \(T(n) = 3n^2 + 10n + 30 \) is \(O(n^2) \)

Why?

Take \(C = 4 \).

Take \(n_0 = 13 \).

Now if \(n \geq 13 \), then

\[10n + 30 \leq 10n + 3n \]

\[= 13n \leq n^2 \]

and so

\[T(n) = 3n^2 + 10n + 30 \leq 3n^2 + n^2 = 4n^2. \]
Example: $T(n) = 3n^2 + 10n + 30$ is $O(n^2)$ because $T(n) \leq 4n^2$ for $n \geq 13$.
Formal definition of $O(n^3)$

Definition: $T(n)$ is $O(n^3)$ if and only if

\[\exists \text{ positive real } C, \]
\[\exists \text{ positive real } n_0, \]

such that $\forall n \geq n_0$ it holds that $T(n) \leq Cn^3$.

“Once n is large enough…

\[\ldots T(n) \text{ is at most a constant factor times } n^3. \]”
Formal definition of $O(g(n))$

Definition: $T(n)$ is $O(g(n))$ if and only if

- \exists positive real C,
- \exists positive real n_0,
- such that $\forall n \geq n_0$ it holds that $T(n) \leq C \cdot g(n)$

“Once n is large enough…

$T(n)$ is at most a constant factor times $g(n)$.”
Formal definition of $\Omega(n^2)$

Definition: $T(n)$ is $\Omega(n^2)$ if and only if

- There exists a positive real number $c > 0$,
- There exists a positive real number n_0,

such that for all $n \geq n_0$, it holds that $T(n) \geq cn^2$.

“Once n is large enough…

...$T(n)$ is at least a constant factor times n^2.”
Formal definition of $\Omega(g(n))$

Definition: $T(n)$ is $\Omega(g(n))$ if and only if

- \exists positive real $c > 0$,
- \exists positive real n_0,
- such that $\forall n \geq n_0$ it holds that $T(n) \geq c \cdot g(n)$

"Once n is large enough…

…$T(n)$ is at least a constant factor times $g(n)$.”
Formal definition of $\Theta(g(n))$

Definition:

$T(n)$ is $\Theta(g(n))$ if and only if

- $T(n)$ is $O(g(n))$
- and
- $T(n)$ is $\Omega(g(n))$.

“Once n is large enough…

...$T(n)$ is *within* a constant factor of $g(n)$.”
Common run-time scaling

\(\Theta(\log n) \) “logarithmic” 2× input size \(\Rightarrow \) run time +1

\(\Theta(n) \) “linear” doubling the input size \(\Rightarrow \) doubling the running time

\(\Theta(n^2) \) “quadratic” 2× input size \(\Rightarrow \) 4× run time

\(\Theta(n^3) \) “cubic” 2× input size \(\Rightarrow \) 8× run time

\(\Theta(n^c) \) “polynomial” 2× input size \(\Rightarrow \) constant × run time

\(\Theta(2^n) \) “exponential” 2× input size \(\Rightarrow \) run time squares
n

steps

100
2n
3n
4n

n

n^2

n

100
A log-log plot
Say 1 step = 1 μs

μs

n!
2^n
n^3
n^2
n

10^16
10^8

n

10^4
10^8

age of universe
one year
one hour
one sec
Some functions, each $O(\cdot)$ of the next

<table>
<thead>
<tr>
<th>Function</th>
<th>$O(\cdot)$ of Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>$\log (\log^* n)$</td>
<td>$n \log n$</td>
</tr>
<tr>
<td>$\log^* n$</td>
<td>n^2</td>
</tr>
<tr>
<td>$\log \log n$</td>
<td>n^3</td>
</tr>
<tr>
<td>$\log n$</td>
<td>n^{100}</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\log n}$</td>
</tr>
<tr>
<td>$n / \log n$</td>
<td>2^n</td>
</tr>
<tr>
<td></td>
<td>3^n</td>
</tr>
<tr>
<td></td>
<td>$n!$</td>
</tr>
<tr>
<td></td>
<td>n^n</td>
</tr>
<tr>
<td></td>
<td>2^{2^n}</td>
</tr>
<tr>
<td></td>
<td>$2^{2^{2\cdots2}}$</td>
</tr>
</tbody>
</table>

n times

Inverse function of $\log (\log^* n)$
Some functions, each $O(\cdot)$ of the next

- $\log (\log^* n)$
- $\log^* n$
- $\log \log n$
- $\log n$
- \sqrt{n}
- $n / \log n$
- n
- $n \log n$
- n^2
- n^3
- n^{100}
- $n^{\log n}$
- $n \cdot (\log n) \cdot 8^{\log^* n}$
- 2^n
- 3^n
- $n!$
- n^n
- 2^{2^n}
- $2^{2^{2^{\cdot^{\cdot^n}}}}$ (n times)

Fastest known alg. for **MULTIPLICATION**
Great Idea #5:

The computation model does make a difference when counting running time.
A picture from Lecture 1

Real World

Computation

Applications

Abstract World

Mathematical model

Explore consequences

TMs maybe not the best model for today’s computers
“Tacit, I hate gas (aroma of evil), masonry, tramps, a wasp martyr. Remote liberal ceding is idle – if... heh-heh,”
Sam X. Xmas murmured in an undertone to tow-trucker Edwards.
“Or – eh – trucks abob.”

TwoFingersPalindromeTest(S,n)

// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)
 if S[lo] ≠ S[hi] then REJECT
 lo ← lo + 1
 hi ← hi - 1
end while
ACCEPT

Poll: what should the running time be?
TwoFingersPalindromeTest(S, n)

```
// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)
  if $S[lo] \neq S[hi]$ then REJECT
  lo ← lo + 1
  hi ← hi - 1
end while
ACCEPT
```
can you really access far-apart
memory cells in “1” step?
TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// $S[1]...S[n]$ is a palindrome

lo ← 1
hi ← n
while (lo < hi)
 if $S[lo] \neq S[hi]$ then REJECT
 lo ← lo + 1
 hi ← hi - 1
end while
ACCEPT

storing hi requires $\log_2 n$ bits;
does decrementing take 1 step? $\Theta(\log n)$ steps?
TwoFingersPalindromeTest\((S, n)\)

// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)
 if S[lo] ≠ S[hi] then REJECT
 lo ← lo + 1
 hi ← hi - 1
end while
ACCEPT
TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// S[1]...S[n] is a palindrome

lo ← 1
hi ← n
while (lo < hi)
 if S[lo] ≠ S[hi] then REJECT
 lo ← lo + 1
 hi ← hi - 1
end while
ACCEPT

This “feels like” it has running time Θ(n)…
TwoFingersPalindromeTest(S, n)

// ACCEPT iff string
// $S[1]...S[n]$ is a palindrome

lo \leftarrow 1
hi \leftarrow n
while (lo $<$ hi)
 if $S[lo] \neq S[hi]$ then REJECT
 lo \leftarrow lo + 1
 hi \leftarrow hi - 1
end while
ACCEPT

Next lecture: We’ll discuss a model where this has running time $\Theta(n)$.

Today: Just want to point these issues out...
Great Idea #6:

Intrinsic complexity
& beating brute force
Intrinsic complexity

Given a *problem*, e.g., PALINDROME, we can ask about its **intrinsic complexity**:

How fast is its **fastest** algorithm?

(Up to $\Theta(\cdot)$, and fixing the model of computation!)
PALINDROME:

We know an O(n) algorithm, TwoFingers. Could there be a faster one? E.g., O(√n)?

Theorem:

Any alg. solving PALINDROME uses ≥ n−1 steps.

Proof sketch: Suppose algorithm A solves it using ≤ n−2 steps. Let x be the string aaaa⋯a (n times), which is a palindrome. When A runs with input x there must be distinct 1 ≤ j₁, j₂ ≤ n such that A never reads I[j₁] or I[j₂]. (Why?) Let x' be the same as x except that x[j₁]=b and x[j₂]=c. When A runs on x' it has same behavior as when it runs on x. (Why?) But A accepts x and rejects x' (why?), a contradiction.
PALINDROME:

We know an $O(n)$ algorithm, *TwoFingers*. Could there be a faster one? E.g., $O(\sqrt{n})$?

Theorem:

Any alg. solving *PALINDROME* uses $\geq n-1$ steps.

Conclusion:

The intrinsic time complexity of *PALINDROME* is **linear**; $\Theta(n)$ time is necessary and sufficient.
MULTIPLICATION:

In grade school you learn an $O(n^2)$ algorithm.

\[
\begin{array}{c}
\square \square \square \\
\times \square \square \square \\
\end{array}
\]

\[
+ \square \square \square \\
= \square \square \square \\
\]
MULTIPLICATION:

In grade school you learn an $O(n^2)$ algorithm.

Easy to show $\geq n$ steps are required: you at least have to write down the answer!

Is there a faster algorithm?

Yes! A much faster one, we’ll see next time…
HAMILTONIAN-CYCLE:

Instance: A connected graph.
Notation: Let ‘n’ = # of vertices.
Solution: Yes/No: Is there a “tour” visiting each vertex exactly once?
HAMiLTONiAN-CYCLE:

Brute-force alg: Try all tours
≈ \(n! \) steps

[Held-Karp’70]: Dynamic programming
≈ \(2^n \) steps

[Björklund’10]: Clever algebraic brute-force
≈ \(1.657^n \) steps
Eulerian-Cycle:

Instance: A connected graph.

Notation: Let ‘n’ = # of vertices.

Solution: Yes/No: Is there a “tour” visiting each edge exactly once?
Eulerian-Cycle:

Algorithm E:

Check if every vertex is attached to an even number of other vertices.
If so, output Yes. Else output No.

Euler’s Theorem: Alg. E solves Eulerian-Cycle.

Time: $T_E(n) = O(n^2)$.
Great Idea #7:

Polynomial time.

I.e., time $O(n^c)$ for some constant c.
There is something truly magical about the notion of polynomial time.
There is an enormous efficiency chasm between polynomial and exponential time.
Hamiltonian-Cycle:

Seems to require exponential time.
We have no ‘good’ understanding of which graphs have Hamiltonian cycles.

Eulerian-Cycle:

Polynomial time.
Euler’s Theorem ‘explains’ Eulerian cycles.

There is an enormous efficiency chasm between polynomial and exponential time.
There is an enormous understanding chasm between polynomial and exponential time.

Hamiltonian-Cycle:

Seems to require exponential time.
We have no ‘good’ understanding of which graphs have Hamiltonian cycles.

Eulerian-Cycle:

Polynomial time.
Euler’s Theorem ‘explains’ Eulerian cycles.

There is an enormous understanding chasm between polynomial and exponential time.
Common progress paradigm for a problem

Brute force algorithm: Exponential time
- what we care about most in 15-251
- usually the ‘magic’ happens here

Algorithmic breakthrough: Polynomial time
- what we care about more in 15-451

Blood, sweat, and tears: Nearly linear time
Does “polynomial time” imply “efficient”?

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>Efficient (unless the constant is insane…)</td>
</tr>
<tr>
<td>$\Theta(n \log n)$</td>
<td>Efficient.</td>
</tr>
<tr>
<td>$\Theta(n^2)$</td>
<td>Kind of efficient.</td>
</tr>
<tr>
<td>$\Theta(n^3)$</td>
<td>Barely efficient?</td>
</tr>
<tr>
<td>$\Theta(n^{100})$</td>
<td>Not efficient. But it almost never arises.</td>
</tr>
</tbody>
</table>

Distinction depends on your exact model.

It’s a **negatable** benchmark:

“**Not polynomial time**” pretty much implies “**not efficient**”.
Polynomial time

50 years of computer science experience shows it’s a very compelling definition:

- A necessary first step towards truly efficient algorithms, associated with “beating brute-force”
- Very robust to notion of what is an elementary step.
- Easy to work with: Plug a poly-time subroutine into a poly-time algorithm: still poly-time.
- Empirically, it seems that most natural problems with poly-time algorithms also have efficient-in-practice algorithms.
Great Idea #8:
The Strong Church–Turing Thesis

All ‘reasonable’ models of step-counting for ‘algorithms’ are polynomially equivalent.
The Strong Church–Turing Thesis

Suggested by decades of computer science experience.

E.g., it’s not hard to show that Turing Machines can simulate “C / python-style” algorithms/step-counting with at most polynomial slowdown, & vice versa.
The Strong Church–Turing Thesis

Challenger from the 1970s:

Randomized computation.

Give the model the ability to generate random bits.

In light of research from 1980s…

We believe (can’t prove) that the Strong Church–Turing Thesis holds true even with randomized computation.
The Strong Church–Turing Thesis

Challenger from the 1980s:

Quantum computation (Lecture 24).
Allow “qubits” in quantum superposition.

In light of research from 1990s…

We believe (can’t prove) that the Strong Church–Turing Thesis is not true.
Great Idea #8:
The Strong Church–Turing Thesis

All ‘reasonable’ models of step-counting for ‘algorithms’ are polynomially equivalent.

Sometimes Great Ideas are wrong!
Challenge all ideas!
Definitions:
Running time complexity.
Big O, Θ, Ω

Practice:
Analyzing time complexity of TMs
Proving $T(n)$ is $O(g(n))$
or $Θ(g(n))$, $Ω(g(n))$
Proving $T(n)$ is not $O(g(n))$,