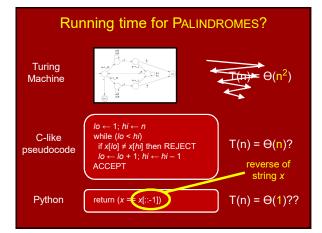
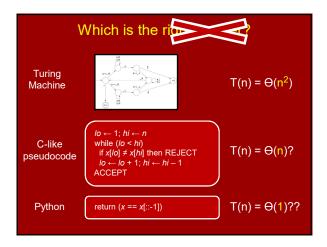
15-251: Great Theoretical Ideas in Computer Science Fall 2018, Lecture 9

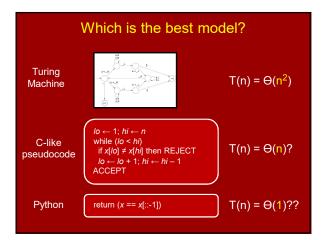
Computational Arithmetic

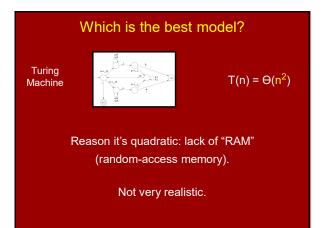
Today

- Talk more about intrinsic time complexity of basic problems.
- Explain a more realistic model for analyzing running time.
- Investigate these issues in the context of some very simple arithmetic problems.

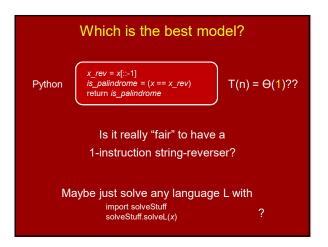


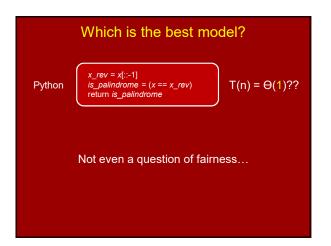


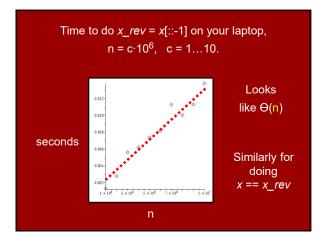


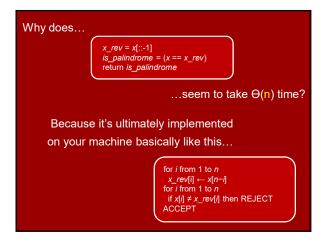


	Which is the best model?
Python	return (x == x[::-1]) $T(n) = \Theta(1)??$



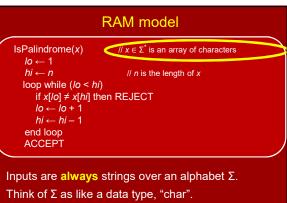




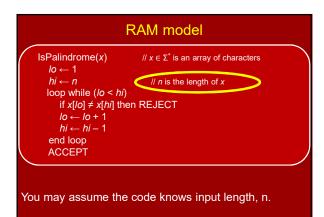


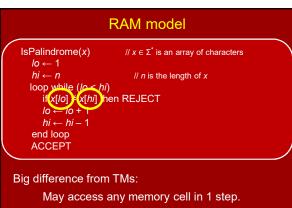
RAM model

- "C-like / low-level pseudocode"
- A good, basic model for algorithmic analysis
- PROS: reasonably realistic, relatively simple, used by professional algorithmicists
- CONS: it's not easy to define it very precisely
- In 251, we'll try not to get hung up on precise details; they typically only make polylogarithmic-factor differences anyway ⁽²⁾

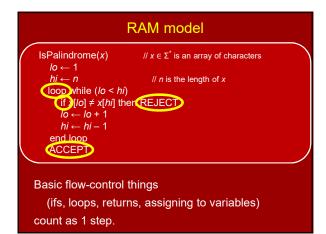


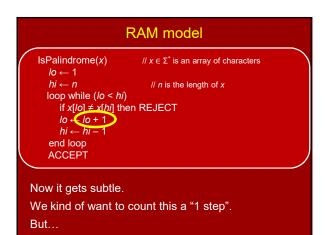
Strings are represented as arrays of chars.





Can also "allocate" memory (arrays) in 1 step.







Can we add two integers in 1 step?

"Sure. Everyone's computer has an x86 chip with an instruction for adding two registers."

"Yeah, but if the numbers have 1,000,000 binary digits, they won't fit into a 64-bit register."

Can we add two integers in 1 step?

"Million-digit numbers?! Those variables lo and hi were between 1 and n. Any real-world input to PALINDROMES will have $n \le 2^{64}$ (= 10000 petabytes)."

"Yeah, but if the numbers have 1,000,000 binary digits, they won't fit into a 64-bit register."

Can we add two integers in 1 step?

"Million-digit numbers?! Those variables lo and hi were between 1 and n. Any real-world input to PALINDROMES will have $n \le 2^{64}$ (= 10000 petabytes)."

"Hey, in July 2018 they found the largest known prime, $M = 2^{77,232,917} - 1$. That's 77 million binary digits. You can't store that in a register!"

Can we add two integers in 1 step?

"Million-digit numbers?! Those variables lo and hi were between 1 and n. Any real-world input to PALINDROMES will have $n \le 2^{64}$ (= 10000 petabytes)."

"The only way to store $M = 2^{77,232,917} - 1$ is as a *string*. Now surely doing " $M \leftarrow M + 1$ " must cost something like 77 million steps."

Can we add two integers in 1 step?

"C'mon. ත්_ුත්. Be reasonable.

has to be $\Theta(n)$ time."

"The only way to store $M = 2^{77,232,917} - 1$ is as a *string*. Now surely doing " $M \leftarrow M + 1$ " must cost something like 77 million steps."

"Gentlemen, gentlemen, you are both right!"

"When the input length is *n*, it is reasonable that an integer variable of *value at most n* (or n² or n³) can fit in one, or a couple of registers.

We will call such a variable a BoundedInt.

It is fair to count arithmetic operations on BoundedInts as taking O(1) steps."

"However! If the input is a number M which is n bits long (so the value of M is $\approx 2^n$), then M is NOT going to fit in a register.

We call such a number a BigInt and it must be stored as a *string*.

Any arithmetic operations on BigInts must be carried out by string-manipulation algorithms!"

RAM model: the final rules

Besides the "character" data type Σ , you may declare variables to be of type BoundedInt.

But to do this, you must separately prove that their value is $O(n^c)$ throughout the algorithm (i.e., at most polynomial in the input length).

RAM model: the final rules

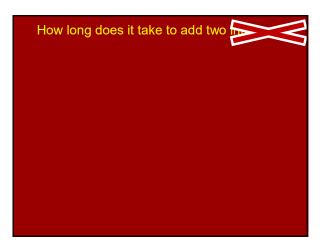
You can do integer arithmetic ops on BoundedInts like +, -, ×, integer-division, mod in "1 step".

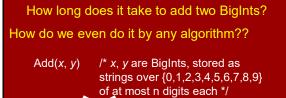
Also, whenever you access an array/memory cell $v \leftarrow x[i]$ the index variable *i* should be a BoundedInt.

Array/memory cells can hold Σ-characters or BoundedInts, and you can convert between them in "1 step".

RAM model

lo and *hi* are BoundedInts. Thus the three lines in the loop are all O(1). So the running time is O(n). Hooray!





return ≽

How long does it take to add two BigInts?

How do we even do it by any algorithm??

Add(*x*, *y*) /* *x*, *y* are BigInts, stored as strings over {0,1,2,3,4,5,6,7,8,9} of at most n digits each */

Generic hint for all algorithms problems:

Imagine how you, personally, would do it, with a pencil and paper, when n = 100.

x = 12345678901234567890123456789012345678901234567890 y = 31415926535897932384626433832795028841971693993751

How would you add these two 50-digit numbers?

000----- 01011111 12345678901234567890123456789012345678901234567890 + 31415926535897932384626433832795028841971693993751

000----- 01011111 12345678901234567890123456789012345678901234567890 + 31415926535897932384626433832795028841971693993751

437 ----- 2928561641

Add(x, y)

/* Assume x, y encoded as base-10 strings with array indices 0...n-1, least-significant-digit first, leading 0's included. We freely convert between digit characters and BoundedInts. */

carry ← 0

for *i* from 0 to *n*-1 do // *i* and *carry* are BoundedInts $columnSum \leftarrow x[i] + y[i] + carry // also a BoundedInt z[i] \leftarrow (columnSum mod 10)$

 $carry \leftarrow (columnSum - z[i]) \div 10$

 $z[n] \leftarrow carry$

return z

Running time: $\Theta(n)$

Add(x, y) /* Assume x, y encoded as base-10 strings with array indices 0...n-1, least-significant-digit first, leading 0's included. We freely convert between digit characters and BoundedInts. */

carry $\leftarrow 0$

for *i* from 0 to *n*-1 do // *i* and *carry* are BoundedInts $columnSum \leftarrow x[i] + y[i] + carry$ // also a BoundedInt $z[i] \leftarrow (columnSum \mod 10)$ $carry \leftarrow (columnSum - z[i]) + 10$ $z[n] \leftarrow carry$

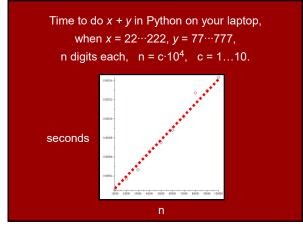
return z

Running time: $\Theta(n)$

Could there be a fundamentally faster algorithm?

No. The output is \geq n digits, so you must spend time \geq n just to write down the answer.

So the *intrinsic complexity* of adding is $\Theta(n)$.



Exercise:

Write an algorithm for *subtraction*:

doing x-y when x and y are n-digit BigInts. Explain why your algorithm is $\Theta(n)$ time.

Onward to multiplication!

	19263
	6421
	1 2 8 4 2
+	+ 32105
-	3 3 4 7 2 6 7 3
$(6.10^3 + 4.10^2 + 2)$	$2 \cdot 10^1 + 1 \cdot 10^0$ × ($5 \cdot 10^3 + 2 \cdot 10^2 + 1 \cdot 10^1 + 3 \cdot 10^0$)
= (6·3)·10 ³⁺	$^{+0}$ + (4·3)·10 ²⁺⁰ +(2·3)·10 ¹⁺⁰ +(1·3)·10 ⁰⁺⁰
+ (<mark>6·1</mark>)·10 ³⁺	⁺¹ + (4·1)·10 ²⁺¹ +(2·1)·10 ¹⁺¹ +(1·1)·10 ⁰⁺¹
+ (<mark>6·2</mark>)·10 ³⁺	+ ² + (4·2)·10 ²⁺² +(2·2)·10 ¹⁺² +(1·2)·10 ⁰⁺²
· (C E) 103+	+3 + (4·5)·10 ²⁺³ +(2·5)·10 ¹⁺³ +(1·5)·10 ⁰⁺³

6421 × 5213

	0421
	× 5213
	19263
	6421
	1 2 8 4 2
+	32105
	33472673

By the way, why does this work?

21

So let's actually try n = 4 first ©

Generic hint for all algorithms problems: Imagine how you, personally, would do it,

How long does it take to multiply integers?

with a pencil and paper,

when n = 100.

Generic hint for all problems:

Try small cases.

	6421
	× 5213
	18 12 6 3
	6421
	¹² 8 4 2
+	30 20 10 5
	33472673
·10 ³ + 4·10 ² + 2·10	¹ + 1·10 ⁰) × (5·10 ³ + 2·10 ² + 1·10 ¹ + 3·10
= (6·3)·10 ³⁺⁰ +	(4·3)·10 ²⁺⁰ +(2·3)·10 ¹⁺⁰ +(1·3)·10 ⁰⁺⁰

$$\begin{split} &+ (6\cdot 1)\cdot 10^{3+1} + (4\cdot 1)\cdot 10^{2+1} + (2\cdot 1)\cdot 10^{1+1} + (1\cdot 1)\cdot 10^{0+1} \\ &+ (6\cdot 2)\cdot 10^{3+2} + (4\cdot 2)\cdot 10^{2+2} + (2\cdot 2)\cdot 10^{1+2} + (1\cdot 2)\cdot 10^{0+2} \\ &+ (6\cdot 5)\cdot 10^{3+3} + (4\cdot 5)\cdot 10^{2+3} + (2\cdot 5)\cdot 10^{1+3} + (1\cdot 5)\cdot 10^{0+3} \end{split}$$

	6421
	× 5213
	18 12 6 3
	6421
	¹² 8 4 2
	+ 30 20 10 5
	3 3 4 7 2 6 7 3
Stage 1	Stage 2
for <i>i</i> = 0 <i>n</i> −1 for <i>j</i> = 0n−1 <i>table[i</i>][<i>j</i>] ← 2	(add up the columns of <i>table</i>) ×[<i>]</i> : <i>y</i> [<i>i</i>]

Stage 1 takes $\Theta(n^2)$ time.

Stage 1

 $table[i][j] \leftarrow x[j] \cdot y[i]$

Each *table[i*][*j*] is a BoundedInt (between 0...81)

Actually... How do you store a 2-d array??

Stage 2

(add up the columns of table)

(Technically, it's implemented by a 1-d array.

table[*i*][*j*] stored at $flatTable[n \cdot i + j]$.

note that it is between 0 and n^2 -1.)

BoundedInt arithmetic to compute index;

Stage 2 takes $\Theta(n^2)$ time.

n columns, and $\Theta(n)$ time per column.

Carries are no longer just 1 digit;

can be as large as 9n. Column sums \leq 90n.

Both storable as BoundedInt.

I leave the details of summing/carrying to you.

Stage 1 for i = 0...n-1for j = 0...n-1table[i][j] $\leftarrow x[j] \cdot y[i]$ Stage 2 (add up the columns of *table*)

Running time of thismultiplication algorithm: $\Theta(n^2)$

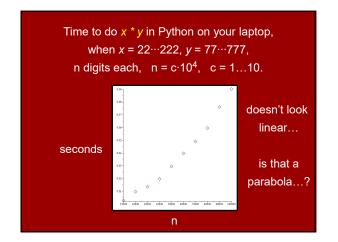
Could there be a fundamentally faster algorithm?

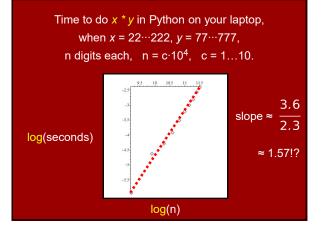
Seems like no... Yet, could we prove it?

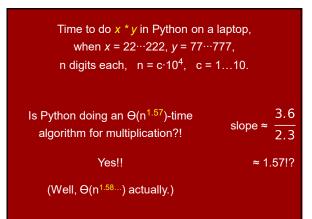
The output is \geq n digits, so you must spend $\Omega(n)$ time just to write down the answer.

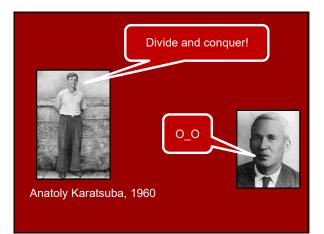
There's still a gap.

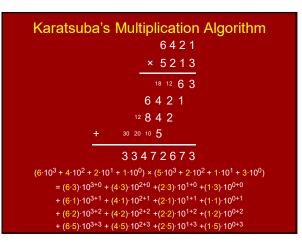
Is the intrinsic complexity of integer multiplication quadratic or linear?

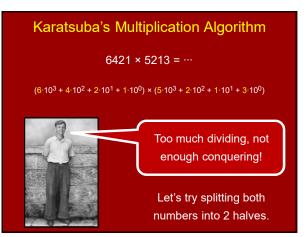












Karatsuba's Multiplication Algorithm

6421 × 5213 = …

$$(64 \cdot 10^2 + 21) \times (52 \cdot 10^2 + 13)$$

$$(64.52) \cdot 10^4 + (64.13 + 21.52) \cdot 10^2 + (21.13)$$

Could compute 64·52 recursively! (Multiplying two n/2-digit numbers.) Could compute 21·13 recursively. Could compute 64·13 & 64·13 recursively.

Karatsuba's Multiplication Algorithm

6421 × 5213 = …

Turns out: Splitting your numbers into 4 pieces, then making 4 recursive calls, still ends up giving quadratic time.

Could compute 64.52 recursively. (Multiplying two n/2-digit numbers.)

Could compute 21.13 recursively.

Could compute 64.13 & 64.13 recursively.

Karatsuba's Multiplication Algorithm

6421 × 5213 = ···

$$(64.52) \cdot 10^4 + (64.13 + 21.52) \cdot 10^2 + (21.13)$$

Can compute 64.52 and 21.13 recursively.

Karatsuba's brainwave:

Compute (64-21) · (52-13), recursively.

(Subtracting two n/2-digit numbers: ⊖(n) time. Doing *one* multiplication on n/2-digit numbers.)

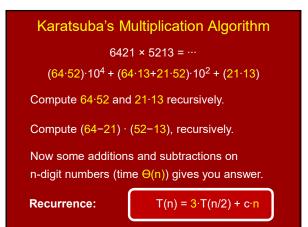
Karatsuba's Multiplication Algorithm

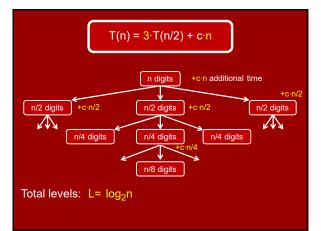
6421 × 5213 = … (64·52)·10⁴ + (64·13+21·52)·10² ⊦ (21·13) Can compute 64·52 and 21·13 recursively. *Karatsuba's brainwave:*

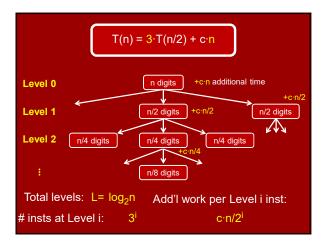
Compute (64–21) · (52–13), recursively.

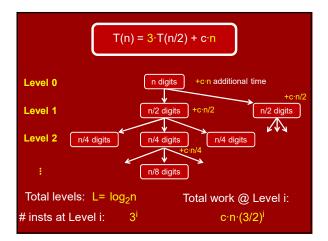
Gives you 64·52 - 64·13 - 21·52 + 21·13.

Subtract off 64·52 & 21·13, negate, you get 64·13 + 21·52











$$T(n) = 3 \cdot T(n/2) + c \cdot n$$
Final running time:

$$\sum_{0 \le i < L} c \cdot n \cdot (3/2)^i = c \cdot n \cdot \frac{(3/2)^L - 1}{(3/2) - 1} \le c \cdot n \cdot \frac{(3/2)^{\log_2 n}}{1/2}$$

$$= 2c \cdot n \cdot n^{\log_2(3/2)} = 2c \cdot n^{\log_2 3}$$

$$= 0(n^{\log_2 3}) \qquad !!$$

$$\log_2 3 \approx 1.58....$$
Total levels: L= log₂n
Total work:
$$\sum_{0 \le i < L} c \cdot n \cdot (3/2)^i$$

How long does it take to multiply integers?

Grade school algorithm: $\Theta(n^2)$

Karatsuba's algorithm: $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.58...})$ Python actually uses this!

Can we do better?

Stay tuned for Lecture 25 ... !

Study Guide

RAM model Difference between BoundedInts & BigInts

Basic arithmetic: Why addition is

 $\begin{array}{l} Why \mbox{ addition is } \Theta(n) \\ Why \mbox{ subtraction is } \Theta(n) \\ Why \mbox{ multiplication } \\ is \mbox{ O}(n^2) \\ Karatsuba: \mbox{ why } \\ \mbox{ multiplication is also } \\ O(n^{\log_2 3}) \end{array}$