
15-251: Great Theoretical Ideas in Computer Science

Computational Arithmetic

Fall 2018, Lecture 9



Today

• Talk more about intrinsic time complexity

of basic problems.

• Explain a more realistic model for

analyzing running time.

• Investigate these issues in the context of

some very simple arithmetic problems.



Running time for PALINDROMES?

T(n) = ϴ(n2)

lo ← 1; hi ← n
while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1; hi ← hi – 1

ACCEPT

Turing
Machine

C-like
pseudocode T(n) = ϴ(n)?

return (x == x[::-1])Python T(n) = ϴ(1)??

reverse of
string x



Which is the right answer?

T(n) = ϴ(n2)

lo ← 1; hi ← n
while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1; hi ← hi – 1

ACCEPT

Turing
Machine

C-like
pseudocode T(n) = ϴ(n)?

return (x == x[::-1])Python T(n) = ϴ(1)??



Which is the best model?

T(n) = ϴ(n2)

lo ← 1; hi ← n
while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1; hi ← hi – 1

ACCEPT

Turing
Machine

C-like
pseudocode T(n) = ϴ(n)?

return (x == x[::-1])Python T(n) = ϴ(1)??



Which is the best model?

T(n) = ϴ(n2)
Turing

Machine

Reason it’s quadratic: lack of “RAM”

(random-access memory).

Not very realistic.



Which is the best model?

return (x == x[::-1])Python T(n) = ϴ(1)??



Which is the best model?

x_rev = x[::-1]
is_palindrome = (x == x_rev)
return is_palindrome

Python T(n) = ϴ(1)??

Is it really “fair” to have a

1-instruction string-reverser?

Maybe just solve any language L with
import solveStuff
solveStuff.solveL(x) ?



Which is the best model?

x_rev = x[::-1]
is_palindrome = (x == x_rev)
return is_palindrome

Python T(n) = ϴ(1)??

Not even a question of fairness…



Time to do x_rev = x[::-1] on your laptop,

n = c∙106,   c = 1…10.

n

seconds

Looks

like ϴ(n)

Similarly for
doing

x == x_rev



x_rev = x[::-1]
is_palindrome = (x == x_rev)
return is_palindrome

Why does…

…seem to take ϴ(n) time?

for i from 1 to n
x_rev[i] ← x[n−i]

for i from 1 to n
if x[i] ≠ x_rev[i] then REJECT

ACCEPT

Because it’s ultimately implemented

on your machine basically like this…



RAM model

• “C-like / low-level pseudocode”

• A good, basic model for algorithmic analysis

• PROS:  reasonably realistic, relatively simple,

used by professional algorithmicists

• CONS: it’s not easy to define it very precisely

• In 251, we’ll try not to get hung up on

precise details; they typically only make 

polylogarithmic-factor differences anyway 



RAM model

IsPalindrome(x)             // x Σ* is an array of characters

lo ← 1
hi ← n // n is the length of x

loop while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end loop
ACCEPT

Inputs are always strings over an alphabet Σ.

Think of Σ as like a data type, “char”.

Strings are represented as arrays of chars.



RAM model

IsPalindrome(x)             // x Σ* is an array of characters

lo ← 1
hi ← n // n is the length of x

loop while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end loop
ACCEPT

You may assume the code knows input length, n.



RAM model

IsPalindrome(x)             // x Σ* is an array of characters

lo ← 1
hi ← n // n is the length of x

loop while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end loop
ACCEPT

Big difference from TMs:  

May access any memory cell in 1 step.

Can also “allocate” memory (arrays) in 1 step.



RAM model

IsPalindrome(x)             // x Σ* is an array of characters

lo ← 1
hi ← n // n is the length of x

loop while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end loop
ACCEPT

Basic flow-control things

(ifs, loops, returns, assigning to variables)

count as 1 step.



RAM model

IsPalindrome(x)             // x Σ* is an array of characters

lo ← 1
hi ← n // n is the length of x

loop while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end loop
ACCEPT

Now it gets subtle. 

We kind of want to count this a “1 step”.

But…



Can we add two integers in 1 step?

Allegory of Arithmetic by Gregor Reisch, 1503.

PythagorusBoethius

Arithmetica



Can we add two integers in 1 step?

“Sure.  Everyone’s computer has

an x86 chip with an instruction

for adding two registers.”

“Yeah, but if the numbers have

1,000,000 binary digits, they

won’t fit into a 64-bit register.”



Can we add two integers in 1 step?

“Million-digit numbers?! Those variables

lo and hi were between 1 and n.

Any real-world input to PALINDROMES

will have n ≤ 264 (= 10000 petabytes).”

“Yeah, but if the numbers have

1,000,000 binary digits, they

won’t fit into a 64-bit register.”



Can we add two integers in 1 step?

“Million-digit numbers?! Those variables

lo and hi were between 1 and n.

Any real-world input to PALINDROMES

will have n ≤ 264 (= 10000 petabytes).”

“Hey, in July 2018 they found the 

largest known prime, M = 277,232,917 − 1.  

That’s 77 million binary digits.

You can’t store that in a register!”



Can we add two integers in 1 step?

“Million-digit numbers?! Those variables

lo and hi were between 1 and n.

Any real-world input to PALINDROMES

will have n ≤ 264 (= 10000 petabytes).”

“The only way to store M = 277,232,917 − 1

is as a string.  Now surely doing

“M ← M + 1” must cost something

like 77 million steps.”



Can we add two integers in 1 step?

“C’mon.  ಠ_ಠ.  Be reasonable.  

i ← 1
while i ≤ n

i ← i+1

has to be ϴ(n) time.”

“The only way to store M = 277,232,917 − 1

is as a string.  Now surely doing

“M ← M + 1” must cost something

like 77 million steps.”



“Gentlemen, gentlemen,

you are both right!”



“When the input length is n,

it is reasonable that an integer

variable of value at most n

(or n2 or n3) can fit in one, or a

couple of registers.

We will call such a variable a

BoundedInt.

It is fair to count arithmetic

operations on BoundedInts as

taking O(1) steps.”



“However!  If the input is a number

M which is n bits long (so the

value of M is ≈2n), then M is NOT

going to fit in a register.  

We call such a number a

BigInt

and it must be stored as a string.

Any arithmetic operations on 

BigInts must be carried out by

string-manipulation algorithms!”



RAM model:  the final rules

Besides the “character” data type Σ, you may

declare variables to be of type BoundedInt.

But to do this, you must separately prove

that their value is O(nc) throughout the algorithm

(i.e., at most polynomial in the input length).

(If this is super-duper-obvious, as in

it’s probably okay to not mention it.)

i ← 1 // i is a BoundedInt
while i ≤ n

i ← i+1



RAM model:  the final rules

You can do integer arithmetic ops on BoundedInts

like +, −, ×, integer-division, mod in “1 step”.

Also, whenever you access an array/memory cell

v ← x[i]

the index variable i should be a BoundedInt.

Array/memory cells can hold Σ-characters or

BoundedInts, and you can convert between

them in “1 step”.



RAM model

IsPalindrome(x)             // x Σ* is an array of characters

lo ← 1
hi ← n // n is the length of x

loop while (lo < hi)
if x[lo] ≠ x[hi] then REJECT
lo ← lo + 1
hi ← hi – 1

end loop
ACCEPT

lo and hi are BoundedInts.

Thus the three lines in the loop are all O(1).

So the running time is O(n).  Hooray!



How long does it take to add two integers?



How long does it take to add two BigInts?

How do we even do it by any algorithm??

Add(x, y) /* x, y are BigInts, stored as 
strings over {0,1,2,3,4,5,6,7,8,9}
of at most n digits each */

return x+y



How long does it take to add two BigInts?

How do we even do it by any algorithm??

Add(x, y) /* x, y are BigInts, stored as 
strings over {0,1,2,3,4,5,6,7,8,9}
of at most n digits each */

Generic hint for all algorithms problems:

Imagine how you, personally, would do it,

with a pencil and paper, 

when n = 100.



x = 12345678901234567890123456789012345678901234567890

y = 31415926535897932384626433832795028841971693993751

How would you add these two 50-digit numbers?



x = 12345678901234567890123456789012345678901234567890

y + 31415926535897932384626433832795028841971693993751

14

1

6

1

1

1

6

1

5

1

8

0

2

1

9

0

27

0

3

0

4

0



x = 12345678901234567890123456789012345678901234567890

y + 31415926535897932384626433832795028841971693993751

14

1

6

1

1

1

6

1

5

1

8

0

2

1

9

0

27

0

3

0

4

0

Add(x, y)
/* Assume x, y encoded as base-10 strings with array
indices 0…n−1, least-significant-digit first, leading 0’s included.
We freely convert between digit characters and BoundedInts. */

carry ← 0
for i from 0 to n−1 do // i and carry are BoundedInts

columnSum ← x[i] + y[i] + carry    // also a BoundedInt

z[i] ← (columnSum mod 10)
carry ← (columnSum − z[i]) ÷ 10

z[n] ← carry
return z



Running time: ϴ(n)ϴ(n)

Add(x, y)
/* Assume x, y encoded as base-10 strings with array
indices 0…n−1, least-significant-digit first, leading 0’s included.
We freely convert between digit characters and BoundedInts. */

carry ← 0
for i from 0 to n−1 do // i and carry are BoundedInts

columnSum ← x[i] + y[i] + carry // also a BoundedInt

z[i] ← (columnSum mod 10)
carry ← (columnSum − z[i]) ÷ 10

z[n] ← carry
return z



Running time: ϴ(n)ϴ(n)

Could there be a fundamentally faster algorithm?

No.  The output is ≥ n digits, so you must

spend time ≥ n just to write down the answer.

So the intrinsic complexity of adding is ϴ(n).



Time to do x + y in Python on your laptop,

when x = 22∙∙∙222, y = 77∙∙∙777,

n digits each,   n = c∙104,   c = 1…10.

n

seconds



Exercise:

Write an algorithm for subtraction:

doing x−y when x and y are n-digit BigInts.

Explain why your algorithm is ϴ(n) time.

Onward to multiplication!



How long does it take to multiply integers?

Generic hint for all algorithms problems:

Imagine how you, personally, would do it,

with a pencil and paper, 

when n = 100.

Generic hint for all problems:

Try small cases.

So let’s actually try n = 4 first 



6 4 2 1

× 5 2 1 3

362

1

91

1246

2482

5012

1

12

3+

3 3 4 7 2 6 7 3

By the way, why does this work?



6 4 2 1

× 5 2 1 3

36291

1246

2482

5012

1

3+

3 3 4 7 2 6 7 3

(6∙103 + 4∙102 + 2∙101 + 1∙100) × (5∙103 + 2∙102 + 1∙101 + 3∙100)

= (6∙3)∙103+0 + (4∙3)∙102+0 +(2∙3)∙101+0 +(1∙3)∙100+0

+ (6∙1)∙103+1 + (4∙1)∙102+1 +(2∙1)∙101+1 +(1∙1)∙100+1

+ (6∙2)∙103+2 + (4∙2)∙102+2 +(2∙2)∙101+2 +(1∙2)∙100+2

+ (6∙5)∙103+3 + (4∙5)∙102+3 +(2∙5)∙101+3 +(1∙5)∙100+3



6 4 2 1

× 5 2 1 3

361218

1246

24812

510+

3 3 4 7 2 6 7 3

(6∙103 + 4∙102 + 2∙101 + 1∙100) × (5∙103 + 2∙102 + 1∙101 + 3∙100)

= (6∙3)∙103+0 + (4∙3)∙102+0 +(2∙3)∙101+0 +(1∙3)∙100+0

+ (6∙1)∙103+1 + (4∙1)∙102+1 +(2∙1)∙101+1 +(1∙1)∙100+1

+ (6∙2)∙103+2 + (4∙2)∙102+2 +(2∙2)∙101+2 +(1∙2)∙100+2

+ (6∙5)∙103+3 + (4∙5)∙102+3 +(2∙5)∙101+3 +(1∙5)∙100+3

2030



6 4 2 1

× 5 2 1 3

361218

1246

24812

510+

3 3 4 7 2 6 7 3

2030

Stage 1
for i = 0…n−1

for j = 0…n−1

table[i][j] ← x[j]∙y[i]

Stage 2
(add up the columns of table)



Stage 1
for i = 0…n−1

for j = 0…n−1

table[i][j] ← x[j]∙y[i]

Stage 2
(add up the columns of table)

Stage 1 takes ϴ(n2) time.

Each table[i][j] is a BoundedInt (between 0…81)

Actually… How do you store a 2-d array??

(Technically, it’s implemented by a 1-d array.  

table[i][j] stored at flatTable[n∙i + j].  

BoundedInt arithmetic to compute index; 

note that it is between 0 and n2−1.)



Stage 1
for i = 0…n−1

for j = 0…n−1

table[i][j] ← x[j]∙y[i]

Stage 2
(add up the columns of table)

Stage 2 takes ϴ(n2) time.

n columns, and ϴ(n) time per column.

Carries are no longer just 1 digit; 

can be as large as 9n.  Column sums ≤ 90n.

Both storable as BoundedInt.

I leave the details of summing/carrying to you.



Running time of this

multiplication algorithm:

Could there be a fundamentally faster algorithm?

The output is ≥ n digits, so you must

spend Ω(n) time just to write down the answer.

Seems like no…  Yet, could we prove it?

There’s still a gap.

ϴ(n2)



Is the intrinsic complexity of 

integer multiplication

quadratic or linear?

Andrey Kolmogorov, 1960

I conjecture it’s

quadratic, Ω(n2).



Time to do x * y in Python on your laptop,

when x = 22∙∙∙222, y = 77∙∙∙777,

n digits each,   n = c∙104,   c = 1…10.

n

seconds

doesn’t look 

linear…

is that a

parabola…?



Time to do x * y in Python on your laptop,

when x = 22∙∙∙222, y = 77∙∙∙777,

n digits each,   n = c∙104,   c = 1…10.

log(n)

log(seconds)

slope ≈

≈ 1.57!?



Time to do x * y in Python on a laptop,

when x = 22∙∙∙222, y = 77∙∙∙777,

n digits each,   n = c∙104,   c = 1…10.

slope ≈

≈ 1.57!?

Is Python doing an ϴ(n1.57)-time

algorithm for multiplication?!

Yes!!

(Well, ϴ(n1.58…) actually.)



Anatoly Karatsuba, 1960

Divide and conquer!

O_O



6 4 2 1

× 5 2 1 3

361218

1246

24812

510+

3 3 4 7 2 6 7 3
(6∙103 + 4∙102 + 2∙101 + 1∙100) × (5∙103 + 2∙102 + 1∙101 + 3∙100)

= (6∙3)∙103+0 + (4∙3)∙102+0 +(2∙3)∙101+0 +(1∙3)∙100+0

+ (6∙1)∙103+1 + (4∙1)∙102+1 +(2∙1)∙101+1 +(1∙1)∙100+1

+ (6∙2)∙103+2 + (4∙2)∙102+2 +(2∙2)∙101+2 +(1∙2)∙100+2

+ (6∙5)∙103+3 + (4∙5)∙102+3 +(2∙5)∙101+3 +(1∙5)∙100+3

2030

Karatsuba’s Multiplication Algorithm



6421 × 5213 = ∙∙∙

(6∙103 + 4∙102 + 2∙101 + 1∙100) × (5∙103 + 2∙102 + 1∙101 + 3∙100)

Karatsuba’s Multiplication Algorithm

Too much dividing, not 

enough conquering!

Let’s try splitting both

numbers into 2 halves.



6421 × 5213 = ∙∙∙

(64∙102 + 21) × (52∙102 + 13)

Karatsuba’s Multiplication Algorithm

(64∙52)∙104 + (64∙13+21∙52)∙102 + (21∙13)

Could compute 64∙52 recursively!  

(Multiplying two n/2-digit numbers.)

Could compute 21∙13 recursively.

Could compute 64∙13 & 64∙13 recursively.



6421 × 5213 = ∙∙∙

(64∙102 + 21) × (52∙102 + 13)

Karatsuba’s Multiplication Algorithm

(64∙52)∙104 + (64∙13+21∙52)∙102 + (21∙13)

Could compute 64∙52 recursively.  

(Multiplying two n/2-digit numbers.)

Could compute 21∙13 recursively.

Could compute 64∙13 & 64∙13 recursively.

Turns out: Splitting your numbers into 4 pieces, 

then making 4 recursive calls,

still ends up giving quadratic time.



Karatsuba’s Multiplication Algorithm

(64∙52)∙104 + (64∙13+21∙52)∙102 + (21∙13)

Can compute 64∙52 and 21∙13 recursively.

Karatsuba’s brainwave:

Compute (64−21) ∙ (52−13), recursively.

6421 × 5213 = ∙∙∙

(Subtracting two n/2-digit numbers: ϴ(n) time.

Doing one multiplication on n/2-digit numbers.)



Karatsuba’s Multiplication Algorithm

(64∙52)∙104 + (64∙13+21∙52)∙102 + (21∙13)

Can compute 64∙52 and 21∙13 recursively.

Karatsuba’s brainwave:

Compute (64−21) ∙ (52−13), recursively.

6421 × 5213 = ∙∙∙

Gives you 64∙52 − 64∙13 − 21∙52 + 21∙13.

Subtract off 64∙52 & 21∙13, negate, you get

64∙13 + 21∙52   



Karatsuba’s Multiplication Algorithm

(64∙52)∙104 + (64∙13+21∙52)∙102 + (21∙13)

Compute 64∙52 and 21∙13 recursively.

Compute (64−21) ∙ (52−13), recursively.

6421 × 5213 = ∙∙∙

Now some additions and subtractions on

n-digit numbers (time ϴ(n)) gives you answer.

Recurrence: T(n) = 3∙T(n/2) + c∙n



T(n) = 3∙T(n/2) + c∙n

n digits

n/2 digits n/2 digits n/2 digits

+c∙n additional time

n/4 digits n/4 digitsn/4 digits

+c∙n/2+c∙n/2

+c∙n/2

n/8 digits

+c∙n/4

Total levels: log2nL=



T(n) = 3∙T(n/2) + c∙n

n digits

n/2 digits n/2 digits

+c∙n additional time

n/4 digits n/4 digitsn/4 digits

+c∙n/2

+c∙n/2

n/8 digits

+c∙n/4

Total levels: 

Level 0

Level 1

Level 2

# insts at Level i: 3i

log2n Add’l work per Level i inst:

c∙n/2i

L=



T(n) = 3∙T(n/2) + c∙n

n digits

n/2 digits n/2 digits

+c∙n additional time

n/4 digits n/4 digitsn/4 digits

+c∙n/2

+c∙n/2

n/8 digits

+c∙n/4

Total levels: 

Level 0

Level 1

Level 2

# insts at Level i: 3i

Total work @ Level i:

c∙n∙(3/2)i

log2nL=



T(n) = 3∙T(n/2) + c∙n

n digits

n/2 digits n/2 digits

+c∙n additional time

n/4 digits n/4 digitsn/4 digits

+c∙n/2

+c∙n/2

n/8 digits

+c∙n/4

Total levels: 

Level 0

Level 1

Level 2

log2nL=

Total work: 
Total work @ Level i:

c∙n∙(3/2)i



T(n) = 3∙T(n/2) + c∙n

Total levels: log2nL=

Total work: 

Final running time:

!!

log23 ≈ 1.58….



How long does it take to multiply integers?

Grade school algorithm: ϴ(n2)

Karatsuba’s algorithm: ϴ(nlog23) ≈ ϴ(n1.58…)

Can we do better?

Python actually uses this!

Stay tuned for Lecture 25…!



Understand:

RAM model
Difference between
BoundedInts & BigInts

Basic arithmetic:

Why addition is ϴ(n)
Why subtraction is ϴ(n)
Why multiplication 

is O(n2)
Karatsuba:  why 

multiplication is also
O(nlog23)

Study Guide


