15-251: Great Theoretical Ideas In Computer Science

Recitation 3

Renouncements

- Review sessions will be held on Thursdays (yesterday) from 6:30-7:30 in GHC 5222.
- Attendance at recitations will be taken into account for computing your participation grade (2% total).

Calculator ${ }^{\text {TM }}$

We say that the output of a TM is the string left on the tape if the TM halts. The input is, of course, the string on the tape before the computation starts. Can you use a TM to

- Add one to a binary number?
- Double a unary number?

Lost, Gone, and Empty

Define EMPTY $=\{\langle M\rangle \mid$ the set of strings accepted by M is $\emptyset\}$.
Show that EMPTY is undecidable.

Regular or Not? You Decide

Define REGULAR $=\{\langle M\rangle \mid$ the set of strings accepted by M is a regular language $\}$.
Show that REGULAR is undecidable.

The Post Correspondence Problem

The Post Correspondence Problem is defined as follows.
Given a set of tiles with two rows e.g.

$$
\left\{\left(\begin{array}{ll}
a & \\
a & b
\end{array}\right),\left(\begin{array}{ll}
c & a \\
a & b
\end{array}\right),\binom{b}{c},\left(\begin{array}{ll}
b & d \\
d &
\end{array}\right)\right\}
$$

Decide: Is there a sequence of tiles (with repetition allowed) such that the string formed along the top row is the same as the string along the bottom row?

For example,

$$
\left(\begin{array}{ll}
a & \\
a & b
\end{array}\right)\left(\begin{array}{ll}
b & d \\
d &
\end{array}\right) \text { or }\left(\begin{array}{ll}
a & \\
a & b
\end{array}\right)\binom{b}{c}\left(\begin{array}{ll}
c & a \\
a & b
\end{array}\right)\left(\begin{array}{ll}
b & d \\
d &
\end{array}\right)
$$

Theorem. PCP is undecidable.
We present an outline of the proof so that

- you see an example of an undecidable problem that doesn't have to do with Turing machines, and
- you learn about configurations.

Major proof steps:
(a) Problem we want to reduce to: ACCEPT. Given M, w, does M accept when run on w ?
(b) A configuration is a string that encodes the current computation: $w_{1} q w_{2}$ where w_{1} is the input to the left of the head, q is the state, w_{2} is the input below and to the right of the head.
(c) A computation history of TM M run on w is a sequence of configurations $C_{1}, \ldots, C_{k}, \ldots$ such that C_{1} is the start configuration with w, and C_{i+1} is the result of the transition function on C_{i}.
(d) Claim: M accepts w iff there is a computation history where the last configuration is accepting.
(e) Idea: we want a PCP representation of a computation history to look like $\binom{\#}{w}\binom{C_{0}}{C_{1}}\binom{C_{1}}{C_{2}}\binom{C_{2}}{C_{3}}\binom{C_{3}}{C_{4}} \cdots$.
(f) Changing configurations (validly) changes only a few things: state, contents of a single tape cell, head position by ± 1.
(g) Make tiles to encode these changes.

