Recitation 4

Announcements

• We have a midterm next week! Be sure to study!

O, I Think I Understand Asymptotics Now

Let f, g, h be functions from \mathbb{N} to \mathbb{N} . Prove or disprove the following:

- (a) If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$
- (b) If $f \in \mathcal{O}(g)$, then $g \in \mathcal{O}(f)$
- (c) $f \in \mathcal{O}(g)$ or $f \in \Omega(g)$

Logapolyrithmic

Prove that for all $k \in \mathbb{R}^+$, $\log(n) \in \mathcal{O}(n^k)$.

Square Root: Polynomial or Exponential?

Give a polynomial time algorithm for computing $|\sqrt{n}|$, for $n \in \mathbb{N}$.

Your Guesses are Two High!

Suppose I am thinking of a number between 1 and n, and will tell you if your guess is too high, too low, or correct. However, I only allow you to guess too high once, or you lose. How quickly can you guess my number? One possible solution is to just guess incrementally from 1 to my number, which takes O(n) time. Can you do better?

ginorSt

Consider the computational model where every operation is free except for comparisons, which have unit cost. Prove that any comparison-based sorting algorithm must cost $\Omega(n \log n)$.