15-251: Great Theoretical Ideas In Computer Science

Recitation 5

Ρ

Let $L \subset \{0,1\}^*$. Prove that if $L \in \mathbf{P}$ then $L^* \in \mathbf{P}$.

Infinity

Let T be a TM with $|\Gamma| = g$, |Q| = q, and suppose it has space complexity S(n).

- (a) Show that if T runs for more than $qnS(n)g^{S(n)}$ steps on an input of length n, it is stuck in an infinite loop. (Recall: we are considering 2-tape TMs)
- (b) Suppose that $S(n) \ge \log(n)$ and T accepts exactly L. Then, there exists a decider for L with space complexity $\mathcal{O}(S(n))$

Clique

Recall that a complete graph is a graph such that every pair of vertices has an edge. We call this a clique. Define CLIQUE to be the decision problem that, given inputs G and k, determines whether G contains a clique of k vertices as a subgraph. Show that $CLIQUE \in \mathbf{PSPACE}$

Path

Define PATH to be the decision problem that, given inputs G, s, t, determines whether there exists a path from s to t in graph G. Find a decision algorithm for PATH with space complexity $O(\log^2(n))$

Irregular Space

Recall that a regular language is a language which a DFA can decide. It is also true that a language is regular if and only if a Turing Machine with less than $\Omega(\log(\log(n)))$ space complexity can decide it. This theorem is beyond the scope of this class, but motivates the following problem: Is there an irregular language which can be decided with $\mathcal{O}(\log(\log(n)))$ space?

- (a) Let our alphabet be $\{0, 1, \#\}$ and define bin(n) to be the binary representation of n. Prove that $L = \{bin(1) \# bin(2) \# \cdots \# bin(n) \mid n \in \mathbb{N}\}$ is irregular.
- (b) Prove that L can be decided by a TM with space complexity $\mathcal{O}(\log(\log(n)))$.