15-251: Great Theoretical Ideas In Computer Science

Recitation 6

Draw

Let \mathcal{T}_{n} denote the set of trees on the vertex set $[n]=\{1,2, \ldots, n\}$.
a) Draw all the distinct elements of \mathcal{T}_{3}.
b) Compute $\left|\mathcal{T}_{4}\right|$.

Degrees and paths

Suppose that a graph G has minimal degree d. Prove that G has a path of length d.

Marriage

Consider the following decision problem and come up with a polynomial time algorithm.
Input : An instance of Stable Matching problem
Output : True if there exists a unique stable matching. False otherwise.

Self-Complements

Complement of a graph $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$ where \bar{E} is made up of all vertex-pairs that are not in E.
A graph $G_{0}=\left(V_{0}, E_{0}\right)$ is isomorphic to $G_{1}=\left(V_{1}, E_{1}\right)$ if there exists a bijection $f: V_{0} \rightarrow V_{1}$ such that $\left\{v_{1}, u_{1}\right\} \in E_{1}$ if and only if $\left\{v_{1}, u_{1}\right\}=\left\{f\left(v_{0}\right), f\left(u_{0}\right)\right\}$ for some $\left\{v_{0}, u_{o}\right\} \in E_{0}$.
A graph G is said to be self-complementary if it is isomorphic to its complement. Prove that there exists a self complementary graph $G=(V, E)$ on n vertices if and only if $n \equiv 0$ or $1 \bmod 4$.

