15-251: Great Theoretical Ideas In Computer Science

Recitation 10

Some remarks fields and polynomials

- Examples of infinite fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Finite field of size p^{k} exists for every prime p and $k \geq 1$ and is unique.
- The characteristic of a field is the number of times a nonzero element is added to obtain 0 . Infinite fields have characteristic 0 and finite field of size p^{k} has characteristic p.
- Important! A finite field of size q is NOT isomorphic to $\mathbb{Z} / q \mathbb{Z}$ unless q is a prime.
- For a field $F, F[x]$ denotes the set of polynomials with coefficients from F. You may apply the Euclidean algorithm to do operations modulo some polynomial f. This means that for any $f, g \in F[x]$, there exists some unique $h, r \in F[x]$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ (or $r=0$) such that

$$
f(x)=g(x) h(x)+r(x)
$$

Fermats Little Theorem

Consider a finite field F of size $q=p^{k}$. Denote the nonzero elements of F as F^{*}. Show that any $x \in F^{*}$ satisfies $x^{q-1}=1$.
Bonus problem : Show that F^{*} is cyclic in the sense that there is some $x \in F^{*}$ such that $\left\{1, x, x^{2}, \ldots, x^{q-1}\right\}=$ F^{*}.

Containment

Let p be a prime, $1 \leq k_{1} \leq k_{2}$. Let $q_{1}=p^{k_{1}}, q_{2}=p^{k_{2}}, F_{1}=F_{q_{1}}$ and $F_{2}=F_{q_{2}}$. Show that if k_{1} divides k_{2} then F_{2} contains a copy of F_{1}.
Bonus problem : Show the converse.

Irreduciblity

Let $n \geq 1$ and define $P(x)=-1+(x-1)(x-2) \ldots(x-n)$. Show that P is irreducible over $\mathbb{Z}[x]$.

Lagrange Interpolation on \mathbb{Z}

Suppose that n_{1}, \ldots, n_{k} are pairwise coprime integers and let $N=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$. Then the system of equations

$$
X \equiv b_{1} \bmod n_{1}, X \equiv b_{2} \bmod n_{2}, \ldots, X \equiv b_{k} \bmod n_{k}
$$

has a unique solution $\bmod N$. This is commonly known as the Chinese Remainder Theorem.

Dont be lazy

Suppose that an attacker knows that some message m is being broadcasted from a server, but each message is encrypted using RSA with different parameters. Suppose that the attacker surveys the public
keys and finds k many pairs of the form $\left(n_{1}, e\right), \ldots,\left(n_{k}, e\right)$ where the encryption key e is the same for all i and the $n_{i} \mathrm{~s}$ are pairwise coprime. Show that if $k \geq e$, then the attacker can decypher the message m.

