Some remarks fields and polynomials

- Examples of infinite fields : $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Finite field of size p^k exists for every prime p and $k \ge 1$ and is unique.
- The characteristic of a field is the number of times a nonzero element is added to obtain 0. Infinite
 fields have characteristic 0 and finite field of size p^k has characteristic p.
- Important! A finite field of size q is NOT isomorphic to $\mathbb{Z}/q\mathbb{Z}$ unless q is a prime.
- For a field F, F[x] denotes the set of polynomials with coefficients from F. You may apply the Euclidean algorithm to do operations modulo some polynomial f. This means that for any f, g ∈ F[x], there exists some unique h, r ∈ F[x] with deg(r) < deg(g) (or r = 0) such that

$$f(x) = g(x)h(x) + r(x)$$

Fermats Little Theorem

Consider a finite field F of size $q = p^k$. Denote the nonzero elements of F as F^* . Show that any $x \in F^*$ satisfies $x^{q-1} = 1$.

Bonus problem : Show that F^* is cyclic in the sense that there is some $x \in F^*$ such that $\{1, x, x^2, ..., x^{q-1}\} = F^*$.

Containment

Let p be a prime, $1 \le k_1 \le k_2$. Let $q_1 = p^{k_1}$, $q_2 = p^{k_2}$, $F_1 = F_{q_1}$ and $F_2 = F_{q_2}$. Show that if k_1 divides k_2 then F_2 contains a copy of F_1 .

Bonus problem : Show the converse.

Irreduciblity

Let $n \ge 1$ and define P(x) = -1 + (x - 1)(x - 2)...(x - n). Show that P is irreducible over $\mathbb{Z}[x]$.

Lagrange Interpolation on \mathbb{Z}

Suppose that $n_1, ..., n_k$ are pairwise coprime integers and let $N = n_1 \cdot n_2 \cdot ... \cdot n_k$. Then the system of equations

$$X \equiv b_1 \mod n_1, X \equiv b_2 \mod n_2, ..., X \equiv b_k \mod n_k$$

has a unique solution mod N. This is commonly known as the Chinese Remainder Theorem.

Dont be lazy

Suppose that an attacker knows that some message m is being broadcasted from a server, but each message is encrypted using RSA with different parameters. Suppose that the attacker surveys the public

keys and finds k many pairs of the form $(n_1, e), ..., (n_k, e)$ where the encryption key e is the same for all i and the n_i s are pairwise coprime. Show that if $k \ge e$, then the attacker can decypher the message m.