15-251: Great Theoretical Ideas In Computer Science

Recitation 11

Subspace madness

Let V be a vector space over some field F. Let U, W be subspaces of V. For the following subsets of V, determine if it is a subspace of V.
(a) $U+W=\{u+w \mid u \in U, w \in W\}$
(b) $a \cdot U=\{a \cdot u \mid u \in U\}$
(c) $U \cup W$
(d) $U \cap W$
(e) $V \backslash U$

Bonus problem: Suppose that $F=\mathbb{R}$ and $V=\mathbb{R}^{n}$. Recall the dot product operation $\cdot: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
u \cdot v=\sum_{i=1}^{n} u_{i} v_{i}
$$

For a subspace U of dimension k, show that the set

$$
U^{\perp}=\{v \in V \mid u \cdot v=0 \text { for some nonzero } u \in U\}
$$

is a subspace and determine its dimension.

More spaces

Show that the following sets are vector spaces over the given field and determine their dimensions.
(a) $M_{m, n}(F)$, the set of $m \times n$ matrices with coefficients from some field F, over F. Here addition is done entrywise and scalar multiplication is applied to all entries.
(b) $F[x]$ over F.
(c) (Bonus) $\mathbb{F}_{p^{k}}$ over \mathbb{F}_{p}, where p is some prime and $k \geq 1$.

MaTricks

Let R be a $m \times n$ matrix, B be a $n \times n$ matrix and A be a $m \times m$ matrix (all with entries over some field F). Show that if $R B=A R$, then $R f(B)=f(A) R$ for any $f \in F[x]$.
(Bonus) Let F be a field and $n \geq 1$. Construct a $n \times n$ matrix A such that no $n \times n$ matrix B satisfies $B^{2}=A$.

Rookie Mistake

A rook is placed at the bottom-left corner of an otherwise empty chessboard. For moves $t \geq 1$, the rook makes a move to a destination chosen uniformly at random (from the set of all legal destinations, cannot stay at the current position). What is the expected time to get to the top-right corner?

Random walks

For an undirected graph G, interpret it as a Markov chain where a state transitions to a neighbor chosen uniformly at random. What is the stationary distribution for this Markov chain?

