15-251: Great Theoretical Ideas in Computer Science Lecture 2
Deductive Systems \& Propositional Logic

Hilbert's 10th problem

Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity of a given logical expression?

$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

(Mechanization of mathematics)

Hilbert's 10th problem

Carrying $\$ 0$, you walk up to an ATM.
The ATM can dispense:

- any number of $\$ 2$ bills;
- any number of $\$ 5$ bills.

Carrying $\$ 0$, you walk up to an ATM.

The ATM can dispense:

- any number of $\$ 2$ bills;
- any number of $\$ 5$ bills.

Which amounts can you leave with?

Solution: Any natural number except 1,3.

A Deductive System consists of:

- One or more initial objects
- One or more deduction rules

A deduction rule specifies how you may create ("deduce") new objects from ones that you have already created ("deduced").

This problem gives a simple example of a
Deductive System

One initial object:
The number 0 .
Two deduction rules:
i. If x is deducible, then so is $x+2$.
ii. If x is deducible, then so is $\mathrm{x}+5$.

An example involving parentheses

In this system, objects are strings made from the characters (and)

One initial object: the string ()
Two deduction rules:
Wrap: from S, may deduce (S)
Concat: from S and T, may deduce ST

Another example: Defining binary trees
This is a binary tree:

Suppose
 and
 are binary trees.

Then each of these is also a binary tree:

"add left"

Example binary tree deduction

 Initial binary tree:Apply "add both" deduction, with $\mathbf{L}=\mathbf{R}=\mathbf{O}$

Hence
 is a binary tree.

Applying "add left" deduction with above tree...

Example binary tree deduction

Applying "add both" to those two deductions:

Binary tree terminology

One initial object:

The number 0 .

Two deduction rules:
i. If x is deducible, then so is $x+2$.
ii. If x is deducible, then so is $x+5$.

The ATM deductive system

Problem: Show that 4 is deducible
Solution: We may deduce:
0 [initial amount]
$2 \quad[+2$ rule applied to 0]
$4 \quad[+2$ rule applied to 2]

The ATM deductive system

Problem: Show that 17 is deducible
Solution: We may deduce:

0	[initial amount	$]$
2	$[+2$ rule applied to 0	$]$
4	$[+2$ rule applied to 2	$]$
6	$[+2$ rule applied to 4	$]$
8	$[+2$ rule applied to 6	$]$
10	$[+2$ rule applied to 8	$]$
12	$[+2$ rule applied to 10$]$	
17	$[+5$ rule applied to 12]	

If a specific object is deducible, you can always (in principle) show it's deducible by "brute force".

The ATM deductive system
Problem: Show that 7 is deducible
Solution: We may deduce:

$$
\left.\begin{array}{lll}
0 & {[\text { initial amount }} \\
2 & {[+2 \text { rule applied to } 0} &] \\
7 & {[+5 \text { rule applied to } 2}
\end{array}\right]
$$

The ATM deductive system
Problem: Show that all nonnegative integers n, $n \neq 1, n \neq 3$, are deducible.

There are infinitely many objects that we need to show are deducible!

We need one proof (written in English) that explains why all these deductions are possible.

The ATM deductive system

Problem: Show that all nonnegative integers n, $n \neq 1, n \neq 3$, are deducible.

Solution:

Lemma: Suppose n is an even nonnegative integer. Then n is deducible.
Proof: Write $\mathrm{n}=2 \mathrm{k}$, for $\mathrm{k} \in \mathbb{N}$.
We can deduce n by applying the " +2 rule" k times in succession, starting from 0 .

The ATM deductive system

Problem: Show that all nonnegative integers n, $n \neq 1, n \neq 3$, are deducible.

Solution:
Lemma: Suppose n is an even nonnegative integer. Then n is deducible.

It remains to show that if n is an odd integer and

$$
n \geq 5, \text { then } n \text { is deducible. }
$$

Given such an n, let $m=n-5$.
Now m is a nonnegative integer (since $n \geq 5$) and
m is even, since it's the difference of two odd \#'s.
So by the Lemma, m is deducible.
From this n is deducible, by applying the +5 rule.

The ATM deductive system
Problem: Show that all nonnegative integers n, $n \neq 1, n \neq 3$, are deducible.

Solution:

Question: Have we completely characterized the numbers deducible in the ATM deductive system?

No! We have not yet shown that 1 and 3 are not deducible!

The ATM deductive system

Problem: Show that 1 and 3 are not deducible.

To show that a certain object is not deducible, have to write one proof showing that all possible deductions fail!

Admittedly, it's kind of "obvious" for 1 and 3 in the ATM deductive system, but let's spell it out rigorously.

The ATM deductive system
Problem: Show that 1 and 3 are not deducible.

Solution:

We start with 1. Suppose for contradiction that 1 is deducible. Since 1 is not an initial amount, it would have to be deduced by either the +5 or +2 rule.
But -4 and -1 are not deducible, since all deducible
amounts are nonnegative. [I think this is "obvious".]
Now we show 3 isn't deducible. Suppose for contradiction it is.
Since 3 is not an initial amount, it would have to be
deduced by either the +5 or +2 rule.
It can't be the +5 rule, because -2 is negative.
And it can't be the +2 rule, because we proved 1 is not deducible.

Parenthesis deductive system

Suppose I want to show the characterization:
"A string of parenthesis is deducible if and only if it is balanced."

What 2 things do I need to prove?

Parenthesis deductive system

In this system, objects are strings made from the characters (and)

One initial object: the string ()
Two deduction rules:
Wrap: from S, may deduce (S)
Concat: from S and T, may deduce ST

Parenthesis deductive system

"A string of parenthesis is deducible if and only if it is balanced."

1. Every string of balanced parentheses can be deduced.
(For this, need to give a method ("algorithm") for generating any given balanced string.)
2. Any string that can be deduced is balanced.
(A pretty straightforward structural induction.)

One final question

Propositional Formulas and Circuits

"Balanced parentheses" what exactly does that mean?
(You will discuss this in recitation tomorrow!)

Propositional Logic Refresher

- It's a model for a simple subset of mathematical reasoning.
- It's that stuff with formulas like

$$
((\neg \mathrm{x} \rightarrow \mathrm{y}) \wedge((\mathrm{x} \vee \mathrm{z}) \leftrightarrow \mathrm{y}))
$$

and truth tables.

- It doesn't have "quantifiers": no \forall, \exists. That extension, called "First Order Logic", will be discussed in the next lecture.

Propositional Logic Refresher

First ingredient: Propositional variables
Denoted by letters, sometimes with subscripts. For example,
$p, w, r, x_{1}, x_{2}, x_{3}, \ldots$
They stand for basic statements that can be either true (T) or false (F).
E.g.: p stands for "I am playing tennis"
w stands for "I am watching tennis"
r stands for "I am reading about tennis"
x_{3} stands for "The $3^{\text {rd }}$ input bit is 1 "

Propositional Logic Refresher

Second ingredient: Connectives

Not	\neg
And	\wedge
Or	\vee
Implies	\rightarrow
If And Only If	\leftrightarrow

When combined with variables, you get formulas. For example: $\quad((\neg p \rightarrow w) \wedge(\neg w \rightarrow r))$
"If I'm not playing tennis then I'm watching tennis, and if I'm not watching tennis then I'm reading about tennis."

Formally defining formulas

A well-formed formula over propositional variables $x_{1}, x_{2}, \ldots, x_{n}$ is any string deducible in the following deductive system:

Initial formulas: Any variable: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
Deduction rules: From A, can obtain $\neg A$
From A, B can obtain $(A \wedge B)$
$(A \vee B)$
$(A \leftrightarrow B)$
E.g.: Show $((\neg p \rightarrow w) \wedge(\neg w \rightarrow r))$ is a formula.

Equivalently:

A formula is a binary tree in which:
2-child nodes are labeled by $\wedge, \vee, \rightarrow$, or \leftrightarrow;
1-child nodes are labeled by \neg;
0 -child nodes (leaves) are labeled by variables.

"If potassium is observed then carbon and hydrogen are also observed."

$$
(k \rightarrow(c \wedge h))
$$

Q: Is this statement true?

A: The question does not make sense.

Truth assignment V: setting of \mathbf{T} or \mathbf{F} for each variable.
Now given a formula S, we can define its truth value V[S] by structural induction:

Base case:

If S is a variable x, then $\mathbf{V}[S]$ is just $\mathbf{V}[x]$.

Inductive step:

Else S is define by a connective applied to subformulas, and we use the below table:

A	B	$\neg \mathrm{A}$	$(\mathrm{A} \wedge \mathrm{B})$	$(\mathrm{A} \vee \mathrm{B})$	$(\mathrm{A} \rightarrow \mathrm{B})$	$(\mathrm{A} \leftrightarrow \mathrm{B})$
F	F	T	F	F	T	T
F	T	T	F	T	T	F
T	F	F	F	T	F	F
T	T	F	T	T	T	T

"If potassium is observed then carbon and hydrogen are also observed."

$$
(k \rightarrow(c \wedge h))
$$

Whether this statement/formula is true/false depends on whether the variables are true/false ("state of the world").

If k is \mathbf{T}, c is \mathbf{T}, h is $\mathbf{F} .$. ... the formula is False.

If k is F, c is F, h is $T .$. ... the formula is True.
Let's talk about TRUTH.

In the binary tree perspective:
$\mathrm{S}=((\neg \mathrm{p} \rightarrow \mathrm{w}) \wedge(\neg \mathrm{w} \rightarrow \mathrm{r})):$

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.

In the binary tree perspective:
$\mathrm{S}=((\neg \mathrm{p} \rightarrow \mathrm{w}) \wedge(\neg \mathrm{w} \rightarrow \mathrm{r})):$

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.

In the binary tree perspective: $\mathrm{S}=((\neg \mathrm{p} \rightarrow \mathrm{w}) \wedge(\neg \mathrm{w} \rightarrow \mathrm{r})):$

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.

In the binary tree perspective:

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.

In the binary tree perspective:
$S=((\neg p \rightarrow w) \wedge(\neg w \rightarrow r)):$

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.

In the binary tree perspective:
$S=((\neg p \rightarrow w) \wedge(\neg w \rightarrow r)):$

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.

In the binary tree perspective:

$$
S=((\neg p \rightarrow w) \wedge(\neg w \rightarrow r)):
$$

Suppose \mathbf{V} assigns: p to \mathbf{T}, w to \mathbf{F}, r to \mathbf{T}.
It follows that $\mathbf{V}[\mathrm{S}]=\mathbf{T}$.

Satisfiability

V satisfies S

$$
\mathbf{V}[\mathrm{S}]=\mathbf{T}
$$

S is satisfiable:
there exists \mathbf{V} such that $\mathbf{V}[\mathrm{S}]=\mathbf{T}$
S is unsatisfiable:
\mathbf{V} [S] $=\mathbf{F}$ for all \mathbf{V}
S is a tautology:

$$
\mathbf{V}[\mathrm{S}]=\mathbf{T} \text { for all } \mathbf{V}
$$

All well-formed formulas

unsatisfiable	satisfiable $(k \rightarrow(c \wedge h))$
$(k \wedge \neg k)$	tautology $(h \rightarrow h)$

"Potassium is observed and potassium is not observed."
"If potassium is observed then carbon and hydrogen are observed.'
"If hydrogen is observed then hydrogen is observed."

$$
S=((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))
$$

Truth table

\mathbf{X}	\mathbf{y}	\mathbf{z}	$((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \leftrightarrow((\mathrm{x} \wedge \mathrm{y}) \rightarrow \mathrm{z}))$
F	F	F	
F	F	T	
F	T	F	
F	T	T	
T	F	F	
T	F	T	
T	T	F	
T	T	T	

$$
S=((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))
$$

Truth table

X	Y	z	$((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))$
F	F	F	T
F	F	T	
F	T	F	
F	T	T	
T	F	F	
T	F	T	
T	T	F	
T	T	T	

S is satisfiable!

$$
S=((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))
$$

Truth table

X	y	z	$((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))$
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T
T	F	F	T
T	F	T	T
T	T	F	T
T	T	T	T

S is a tautology!

Deciding Satisfiability / Tautology

Truth table method:
Pro: Always works
Con: If S has n variables, takes $\approx 2^{\mathrm{n}}$ time
Conjectures:
There is no polynomial time algorithm that works for every formula.

There is no $\mathrm{O}\left(1.999^{n}\right)$ time algorithm
that works for every formula.

Another open problem about truth tables: who invented them?

Post?

Łukasiewicz?

Jevons?

Peirce?

Ladd-Franklin?

Logical Equivalence

Definition:

Formulas R and S are equivalent,

$$
\text { written } \mathrm{R} \equiv \mathrm{~S}
$$

if $\mathbf{V}[R]=\mathbf{V}[S]$ for all truth-assignments \mathbf{V}.
I.e., their truth tables are exactly the same.

Problem: Show $(((x \rightarrow y) \wedge x) \rightarrow y)$ is a tautology.
Solution 1: Truth-table method
Solution 2: Use equivalences:

$$
\begin{array}{rlr}
& (((x \rightarrow y) \wedge x) \rightarrow y) & \\
\equiv & \neg((x \rightarrow y) \wedge x) \vee y & \text { (using } \quad A \rightarrow B \equiv \neg A \vee B \quad \text {) } \\
\equiv & (\neg(x \rightarrow y) \vee \neg x) \vee y & \text { (using } \quad \neg(A \wedge B) \equiv \neg A \vee \neg B \quad) \\
\equiv & \neg(x \rightarrow y) \vee(\neg x \vee y) & \text { (using }(A \vee B) \vee C \equiv A \vee(B \vee C)) \\
\equiv & \neg(\neg x \vee y) \vee(\neg x \vee y) & \text { (using } \quad A \rightarrow B \equiv \neg A \vee B \quad) \\
= & \neg S \vee S, \quad \text { where } S=(\neg x \vee y) .
\end{array}
$$

And a formula of the form $\neg \mathrm{SvS}$ is always a tautology.

Example equivalences

$$
\begin{aligned}
& \neg(x \wedge y) \equiv(\neg x \vee \neg y) \\
& \neg(A \wedge B) \equiv(\neg A \vee \neg B) \quad \downarrow \quad \text { "De Morgan's } \\
& \neg(A \vee B) \equiv(\neg A \wedge \neg B) \quad \text { Laws" } \\
& A \rightarrow B \equiv(\neg A \vee B) \\
& A \leftrightarrow B \equiv((A \rightarrow B) \wedge(B \rightarrow A)) \\
& \neg \neg A \equiv A \\
& (A \vee B) \equiv(B \vee A) \quad \text { "commutativity" } \\
& ((A \vee B) \vee C) \equiv(A \vee(B \vee C)) \quad \text { "associativity" } \\
& \text { remark: so it's okay to write }(A \vee B \vee C) \\
& \text { commutativity and associativity of } \wedge \\
& A \vee A \equiv A \\
& \text { etc... }
\end{aligned}
$$

Logical entailment

"Is S a tautology?"

"Assuming formulas A_{1}, \ldots, A_{m} ('axioms') is S a logical consequence ('theorem')?"

more typical kind of thing to be interested in

Logical entailment

Definition:

Formulas A_{1}, \ldots, A_{m} entail formula S,

$$
\text { written } A_{1}, \ldots, A_{m} \vDash S \text {, }
$$

if every truth-assignment ς which makes A_{1}, \ldots, A_{m} equal T also makes S equal T.
" S is a logical consequence of $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$."

Entailment examples

$$
\begin{aligned}
& x, y \vDash(x \wedge y) \\
& A, B \vDash(A \wedge B) \\
& A \vDash(A \vee B) \text { for any } B \\
& A, A \rightarrow B \vDash B \\
& A \rightarrow B, B \rightarrow C \vDash A \rightarrow C \\
& A \vee x, B \vee \neg x \vDash A \vee B \\
& \text { etc. }
\end{aligned}
$$

$$
\text { iff } \quad\left(A_{1} \wedge \cdots \wedge A_{m}\right) \rightarrow S \text { is a tautology }
$$

Every formula has a corresponding truth table.

$$
((x \wedge y) v(x \wedge z)) v(y \wedge z)
$$

From logic to computation...

... where we usually write $\mathbf{0}$ and $\mathbf{1}$, rather than \mathbf{F} and \mathbf{T}.

Every formula has a corresponding truth table.

	X	y	z	$((x \wedge y) \vee(x \wedge z)) \vee(y \wedge z)$
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
¢	1	0	1	1
$\stackrel{\text { す\% }}{ }$	1	1	0	1
-	1	1	1	1

Truth table also represents a Boolean function,

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

A Boolean function $f:\{0,1\}^{3} \rightarrow\{0,1\}$ can be specified by a truth table. E.g.:

x	y	z	$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Or it can be specified by words. E.g.:
" $f(x, y, z)=1$ iff at least two input bits are 1"

Question:

How many Boolean functions (truth tables) are there on n variables?

Answer: $2^{2^{n}}$

We know each propositional formula on n variables "computes" one such function.

Question:

Is every Boolean function (truth table) computed by some propositional formula?

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f
0	0	0	0	$\mathbf{1}$
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$
\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge \neg x_{4}
$$

Is every truth table computed by some formula?

x_{1}	x_{2}	x_{3}	x_{4}	f	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	1	$X_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}$
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	0	

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

$$
x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}
$$

Is every truth table computed by some formula?

$$
\begin{array}{cccc|l}
X_{1} & X_{2} & X_{3} & X_{4} & f \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}
$$

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

We can similarly do any truth table with exactly one 1.

Is every truth table computed by some formula?

Is every truth table computed by some formula?

$\mathrm{x}_{1} \mathrm{X}_{2}$	X_{3}	X_{4}	f	
0	0	0	0	0

Circuits

Is every truth table computed by some formula?

We have just done "proof by example" © for the following result:

Theorem:

Every Boolean function (truth table) over n variables can be computed by a formula. (And only using \neg, \wedge, .)

Actually, we missed a case...
...the Boolean function which is always 0
Well, it's computed by $\left(x_{1} \wedge \neg X_{1}\right)$.
$((x \wedge y) \wedge(y \vee z)) \vee \neg(x \wedge y)$ is a formula.

Deduction: We can deduce it as follows:

x	[variable	[variable
y	[variable	
z	$[\wedge$ applied to $x, y ~]$	
$(x \wedge y)$	$[\vee$ applied to $y, z]$	
$(y \vee z)$	$[\wedge$ of previous two]	
$((x \wedge y) \wedge(y \vee z))$	$[\neg$ of $(x \wedge y)$	
$\neg(x \wedge y)$	$[\vee$ of previous two]	

$((x \wedge y) \wedge(y \vee z)) \vee \neg(x \wedge y)$ is a formula.

This tree depicts the formula, not the deduction.

What is the difference between circuits and formulas?

In circuits, nodes (gates) may have fan-out > 1. (In particular, they are "dags", not trees.)
Formulas are trees: all nodes have fan-out 1.

Circuits can reuse already-computed pieces. Formulas cannot; everything must be "rebuilt". So circuits can be "more efficient".

Deduction viewpoint: The circuit is the deduction The formula is the last line.

Circuits are a kind of "programming language". How efficient can they be?

Consider all truth tables with 42 variables.

It's not hard to show that there exists such a truth table (in fact many) such that the smallest circuit computing it requires at least 100 billion gates.

But no one explicitly knows such a truth table.
The best explicit example we know is a truth table that requires at least $\mathbf{1 2 3}$ gates.
$((x \wedge y) \wedge(y \vee z)) \vee \neg(x \wedge y)$ is a formula.
Depiction of the deduction:

Such a picture is called a Boolean circuit.

Deductive systems:
definitions
characterizations
binary tree definitions
Propositional logic:
formulas
truth assignments valid/satisfiable truth-table method equivalences all functions computable

Circuits:

definitions

