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15-251: Great Theoretical Ideas in Computer Science

Deductive Systems
& Propositional Logic &

Lecture 2

drawing by Alecos Papadatos
color by Annie Di Donna

Remember Tuesday?

Need to talk about

Deductive Systems

Need to talk about

Propositional Logic

Deductive Systems

Carrying $0, you walk up to an ATM.

The ATM can dispense:
• any number of $2 bills;
• any number of $5 bills.
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Carrying $0, you walk up to an ATM.

The ATM can dispense:
• any number of $2 bills;
• any number of $5 bills.

Which amounts can you leave with?

Solution:  Any natural number except 1,3.

This problem gives a simple example of a
Deductive System

One initial object:
The number 0.

Two deduction rules:
i.    If x is deducible, then so is x+2.
ii. If x is deducible, then so is x+5.

A Deductive System consists of:

• One or more initial objects

• One or more deduction rules

A deduction rule specifies how you may

create (“deduce”) new objects from ones

that you have already created (“deduced”).

An example involving parentheses

In this system, objects are strings made

from the characters ( and )

One initial object:  the string ()

Two deduction rules:

Wrap: from S, may deduce (S)
Concat: from S and T, may deduce ST

One initial object:  the string ()
Two deduction rules:

Wrap: from S, may deduce (S)
Concat: from S and T, may deduce ST

Problem: Deduce (()(()))

Solution: We may deduce:

() [ initial object ]
(()) [ Wrap applied to () ]
()(())  [ Concat applied to () and (()) ]
(()(()))) [ Wrap applied to ()(()) ]

This is a binary tree:

Suppose               and               are binary trees.

Then each of these is also a binary tree:

L R

LL RR

Another example:  Defining binary trees

“add left” “add right” “add both”
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Initial binary tree:

Example binary tree deduction

Apply “add both” deduction, with L = R =

Hence                            is a binary tree.

Applying “add left” deduction with above tree…

Example binary tree deduction

Apply “add both” deduction, with L = R =

Hence                            is a binary tree.

Applying “add left” deduction with above tree…

Applying “add both” to those two deductions:

Example binary tree deduction

Applying “add both” to those two deductions:

Binary tree terminology

nodes/vertices
edges

root node

leaf nodes
(no children)

Binary tree terminology

root

leaves

The ATM deductive system

One initial object:
The number 0.

Two deduction rules:
i.    If x is deducible, then so is x+2.
ii. If x is deducible, then so is x+5.
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The ATM deductive system

Problem: Show that 4 is deducible

Solution: We may deduce:

0 [ initial amount          ]

2 [ +2 rule applied to 0 ]

4 [ +2 rule applied to 2 ]

The ATM deductive system

Problem: Show that 7 is deducible

Solution: We may deduce:

0 [ initial amount          ]

2 [ +2 rule applied to 0 ]

7 [ +5 rule applied to 2 ]

The ATM deductive system

Problem: Show that 17 is deducible

Solution: We may deduce:

0 [ initial amount            ]

2 [ +2 rule applied to 0   ]

4 [ +2 rule applied to 2   ]

6 [ +2 rule applied to 4   ]

8 [ +2 rule applied to 6   ]

10 [ +2 rule applied to 8   ]

12 [ +2 rule applied to 10 ]

17 [ +5 rule applied to 12 ]

If a specific object is deducible, you can always

(in principle) show it’s deducible by “brute force”.

The ATM deductive system

Problem: Show that all nonnegative integers n,

n ≠ 1, n ≠ 3, are deducible.

There are infinitely many objects that we need

to show are deducible!

We need one proof (written in English) that

explains why all these deductions are possible.

The ATM deductive system

Problem: Show that all nonnegative integers n,

n ≠ 1, n ≠ 3, are deducible.

Solution:

Lemma:  Suppose n is an even nonnegative integer.

Then n is deducible.

Proof: Write n = 2k, for k ∈ ℕ.

We can deduce n by applying the “+2 rule”

k times in succession, starting from 0.

The ATM deductive system

Problem: Show that all nonnegative integers n,

n ≠ 1, n ≠ 3, are deducible.

Solution:

Lemma:  Suppose n is an even nonnegative integer.

Then n is deducible.

It remains to show that if n is an odd integer and

n ≥ 5, then n is deducible.

Given such an n, let m = n−5.

Now m is a nonnegative integer (since n ≥ 5) and

m is even, since it’s the difference of two odd #’s. 

So by the Lemma, m is deducible.

From this n is deducible, by applying the +5 rule.
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The ATM deductive system

Problem: Show that all nonnegative integers n,

n ≠ 1, n ≠ 3, are deducible.

Question: Have we completely characterized 

the numbers deducible in the 

ATM deductive system?

Solution:  ……

No!  We have not yet shown that 

1 and 3 are not deducible!

The ATM deductive system

Problem: Show that 1 and 3 are not deducible. 

To show that a certain object is not deducible,

have to write one proof showing that 

all possible deductions fail!

Admittedly, it’s kind of “obvious” for 1 and 3

in the ATM deductive system,

but let’s spell it out rigorously.

The ATM deductive system

Problem: Show that 1 and 3 are not deducible. 

Solution:
We start with 1.  Suppose for contradiction that 1 is deducible. 

Since 1 is not an initial amount, it would have to be

deduced by either the +5 or +2 rule.

But −4 and −1 are not deducible, since all deducible

amounts are nonnegative.    [I think this is “obvious”.]

Now we show 3 isn’t deducible.  Suppose for contradiction it is.

Since 3 is not an initial amount, it would have to be

deduced by either the +5 or +2 rule.

It can’t be the +5 rule, because −2 is negative.

And it can’t be the +2 rule, because we proved 1 is not deducible.

Parenthesis deductive system

In this system, objects are strings made

from the characters ( and )

One initial object:  the string ()

Two deduction rules:

Wrap: from S, may deduce (S)
Concat: from S and T, may deduce ST

Parenthesis deductive system

Suppose I want to show the characterization:

“A string of parenthesis is deducible

if and only if it is balanced.”

What 2 things do I need to prove?

Parenthesis deductive system

“A string of parenthesis is deducible

if and only if it is balanced.”

1. Every string of balanced parentheses

can be deduced.

(For this, need to give a method (“algorithm”)

for generating any given balanced string.)

2. Any string that can be deduced is balanced.

(A pretty straightforward structural induction.)
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One final question

“Balanced parentheses” —

what exactly does that mean?

(You will discuss this in recitation tomorrow!)

Propositional Formulas
and Circuits

Propositional Logic Refresher

• It’s a model for a simple subset
of mathematical reasoning.

• It’s that stuff with formulas like

((¬x→y)∧((x∨z) ↔y))

and truth tables.

• It doesn’t have “quantifiers”:  no ∀, ∃.
That extension, called “First Order Logic”,
will be discussed in the next lecture.

Propositional Logic Refresher

First ingredient:  Propositional variables

Denoted by letters, sometimes with subscripts.
For example, p,  w,  r,  x1,  x2,  x3, … 

They stand for basic statements that 
can be either true (T) or false (F).

E.g.: p stands for “I am playing tennis”
w stands for “I am watching tennis”
r stands for “I am reading about tennis”
x3 stands for “The 3rd input bit is 1”

Propositional Logic Refresher

Second ingredient:  Connectives

Not ¬
And ∧
Or ∨
Implies →
If And Only If ↔

When combined with variables, you get formulas.

For example:

“If I’m not playing tennis then I’m watching tennis,
and if I’m not watching tennis then I’m reading about tennis.”

( (¬p → w) ∧ (¬w → r) )

Formally defining formulas

A well-formed formula over propositional 
variables x1, x2, …, xn is any string deducible
in the following deductive system: 

From A, can obtain ¬A
From A, B can obtain (A∧B) 

(A∨B) 
(A→B) 
(A↔B)

Deduction rules:

Initial formulas: Any variable:  x1, x2, …, xn

E.g.:  Show ( (¬p → w) ∧ (¬w → r) ) is a formula.
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Equivalently:

A formula is a binary tree in which: 
2-child nodes are labeled by ∧, ∨, →, or ↔;
1-child nodes are labeled by ¬;
0-child nodes (leaves) are labeled by variables.

∧

→ →

¬ w ¬ r

p w

( (¬p → w) ∧ (¬w → r) )    ≡
Let’s talk about TRUTH.

“If potassium is observed then 
carbon and hydrogen are also observed.”

(k→(c∧h))

Q: Is this statement true?

A: The question does not make sense.

Whether this statement/formula is true/false
depends on whether the variables are true/false

(“state of the world”).

If  k is T,  c is T,  h is F…
… the formula is False.

“If potassium is observed then 
carbon and hydrogen are also observed.”

(k→(c∧h))

If  k is F,  c is F,  h is T…
… the formula is True.

Truth assignment V: setting of T or F for each variable.

A B ¬A (A∧B) (A∨B) (A→B) (A↔B)

F F T F F T T

F T T F T T F

T F F F T F F

T T F T T T T

Now given a formula S, we can define its 
truth value V[S] by structural induction:

Base case:  
If S is a variable x, then V[S] is just V[x].

Inductive step:
Else S is define by a connective applied to
subformulas, and we use the below table:

In the binary tree perspective:

∧

→ →

¬ w ¬ r

p w

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.
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In the binary tree perspective:

∧

→ →

¬ F ¬ T

T F

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.

In the binary tree perspective:

∧

→ →

F F ¬ T

T F

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.

In the binary tree perspective:

∧

→ →

F F T T

T F

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.

In the binary tree perspective:

∧

T →

F F T T

T F

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.

In the binary tree perspective:

∧

T T

F F T T

T F

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.

In the binary tree perspective:

T

T T

F F T T

T F

S = ( (¬p → w) ∧ (¬w → r) ):

Suppose V assigns:  p to T,  w to F,  r to T.

It follows that V[S] = T.  
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Satisfiability

V satisfies S:      

V [S] = T

S is satisfiable:

there exists V such that V [S] = T

S is unsatisfiable:

V [S] = F for all V

S is a tautology:

V [S] = T for all V

unsatisfiable

All well-formed formulas

satisfiable

tautology

(k∧¬k)

(h→h)

(k→(c∧h))

“Potassium is observed and potassium is not observed.”

“If hydrogen is observed then hydrogen is observed.”

“If potassium is observed then 
carbon and hydrogen are observed.”

Tautology: automatically true, 
for ‘purely logical’ reasons

Unsatisfiable: automatically false,
for purely logical reasons

Satisfiable (but not a tautology):  

truth value depends 
on the state of the world

S = ((x→(y→z))↔((x∧y)→z))

Truth table

x y z ((x→(y→z))↔((x∧y)→z))

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T

S = ((x→(y→z))↔((x∧y)→z))

Truth table

x y z ((x→(y→z))↔((x∧y)→z))

F F F T

F F T

F T F

F T T

T F F

T F T

T T F

T T T

S is satisfiable!

S = ((x→(y→z))↔((x∧y)→z))

Truth table

x y z ((x→(y→z))↔((x∧y)→z))

F F F T

F F T T

F T F T

F T T T

T F F T

T F T T

T T F T

T T T T

S is a tautology!
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Deciding Satisfiability / Tautology

Truth table method:

Pro:   Always works

Con:  If S has n variables, takes ≈ 2n time

Conjectures:

There is no polynomial time 
algorithm that works for every formula.

There is no O(1.999n) time algorithm
that works for every formula.

Another open problem about
truth tables:  who invented them?

Wittgenstein?Russell? Peirce?

Łukasiewicz?

Post?

Jevons? Ladd–Franklin?

Formulas R and S are equivalent, 

written R ≡ S,

if V[R] = V[S] for all truth-assignments V. 

I.e., their truth tables are exactly the same.

Logical Equivalence

Definition:

Example equivalences

¬(x∧y) ≡ (¬x∨¬y)

¬(A∧B) ≡ (¬A∨¬B)

¬(A∨B) ≡ (¬A∧¬B)

A→B ≡ (¬A∨B)

A↔B ≡ ((A→B)∧(B→A))

¬¬A ≡ A

(A∨B) ≡ (B∨A)

((A∨B)∨C) ≡ (A∨(B∨C))

remark: so it’s okay to write (A∨B∨C)

commutativity and associativity of ∧

A∨A ≡ A

“De Morgan’s
Laws”

“commutativity”

“associativity”

etc…

(((x→y)∧x)→y)

≡ ¬((x→y)∧x)∨y

≡ (¬(x→y)∨¬x)∨y

≡ ¬(x→y)∨(¬x∨y)

≡ ¬(¬x∨y)∨(¬x∨y)

= ¬S∨S,    where S = (¬x∨y).

Problem: Show (((x→y)∧x)→y) is a tautology.

Solution 1: Truth-table method

(using        A→B ≡ ¬A∨B      )

(using   ¬(A∧B) ≡ ¬A∨¬B   )

(using (A∨B)∨C ≡ A∨(B∨C) )

(using        A→B ≡ ¬A∨B      )

Solution 2: Use equivalences:

And a formula of the form ¬S∨S is always a tautology.

Logical entailment

“Is S a tautology?”

“Assuming formulas A1, …, Am (‘axioms’)

is S a logical consequence (‘theorem’)?”

moderately interesting

more typical kind of
thing to be interested in
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Logical entailment

Formulas A1, …, Am entail formula S,  

written A1, …, Am ⊨ S,

if every truth-assignment V which makes

A1, …, Am equal T also makes S equal T.

Definition:

“S is a logical consequence of A1, …, Am.”

Entailment examples

x, y  ⊨  (x∧y)

A, B  ⊨  (A∧B)

for any BA  ⊨  (A∨B)   for any B

A, A→B  ⊨  B

A→B, B→C  ⊨ A→C

A∨x, B∨¬x ⊨ A∨B

etc.

fact: A1, …, Am ⊨  S

iff (A1∧···∧Am)→S   is a tautology

From logic to computation…

…where we usually write 0 and 1,
rather than F and T.

Every formula has a corresponding truth table.

((x∧y)∨(x∧z))∨(y∧z)

Every formula has a corresponding truth table.

Truth table also represents a Boolean function,

f : {0,1}n → {0,1}

x y z ((x∧y)∨(x∧z))∨(y∧z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

((x∧y)∨(x∧z))∨(y∧z)

le
n
g
th

-n
 b

in
a
ry

 s
tr

in
g
s

A Boolean function f : {0,1}3→{0,1} can be 

specified by a truth table.  E.g.:

Or it can be specified by words.  E.g.:

“f(x,y,z) = 1 iff at least two input bits are 1”

f : {0,1}n → {0,1}

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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Question:

How many Boolean functions (truth tables)

are there on n variables?

Answer: 22
n

We know each propositional formula on n

variables “computes” one such function.

Is every Boolean function (truth table)

computed by some propositional formula?

Question:

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

x1 ∧ x2 ∧ x3 ∧ x4

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

x1 ∧ ¬x2 ∧ x3 ∧ ¬x4

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

¬x1 ∧ x2 ∧ x3 ∧ x4

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

We can similarly do

any truth table

with exactly one 1.
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Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

(¬x1 ∧ x2 ∧ x3 ∧ x4)

∨

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4)

What if there

are two 1’s?

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

(¬x1 ∧ x2 ∧ x3 ∧ x4)

∨

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4)

What if there

are three 1’s?

Is every truth table computed by some formula?

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x1 x2 x3 x4     f

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

(¬x1 ∧ x2 ∧ x3 ∧ x4)

∨

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4)

∨

(x1 ∧ x2 ∧ x3 ∧ ¬x4)

What if there

are three 1’s?

We have just done “proof by example” 

for the following result:

Theorem:

Every Boolean function (truth table) over

n variables can be computed by a formula.

(And only using ¬, ∧, ∨.)

Actually, we missed a case…

…the Boolean function which is always 0.

Well, it’s computed by (x1 ∧ ¬x1).

Circuits

( (x∧y) ∧ (y∨z) ) ∨ ¬(x∧y)  is a formula.

Deduction:   We can deduce it as follows:

x [variable ]

y        [variable          ]

z [variable ]

(x∧y) [∧ applied to x, y ]

(y∨z) [∨ applied to y, z ]

( (x∧y) ∧ (y∨z)) [∧ of previous two]

¬(x∧y) [¬ of (x∧y) ]

( (x∧y) ∧ (y∨z)) ∨ ¬(x∧y) [∨ of previous two]
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( (x∧y) ∧ (y∨z) ) ∨ ¬(x∧y)  is a formula.

Tree version:

This tree depicts the formula, not the deduction.

∨

∧ ¬

∨

x

∧

y y z x y

∧

( (x∧y) ∧ (y∨z) ) ∨ ¬(x∧y)  is a formula.

Depiction of the deduction:

¬

x

∧

z

∨

y

∧

∨

Such a picture is called a Boolean circuit.

gates

output

wires

inputs

a gate with
“fan-in” 2,

“fan-out” 1

What is the difference between

circuits and formulas?

In circuits, nodes (gates) may have fan-out > 1.
(In particular, they are “dags”, not trees.)

Formulas are trees: all nodes have fan-out 1.

Circuits can reuse already-computed pieces.

Formulas cannot; everything must be “rebuilt”.

So circuits can be “more efficient”.

Deduction viewpoint: The circuit is the deduction.

The formula is the last line.

We’ll end with a mystery from the field of

Theoretical Computer Science.

Circuits are a kind of “programming language”.
How efficient can they be?

Consider all truth tables with 42 variables.

It’s not hard to show that there exists such

a truth table (in fact many) such that the

smallest circuit computing it requires

at least 100 billion gates.

But no one explicitly knows such a truth table.

The best explicit example we know is a

truth table that requires at least 123 gates.

Deductive systems:

definitions

characterizations

binary tree definitions

Propositional logic: 

formulas

truth assignments

valid/satisfiable

truth-table method

equivalences

all functions computable

Circuits:

definitions

Study Guide


