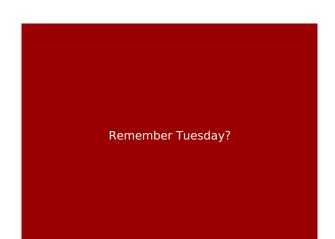
15-251: Great Theoretical Ideas in Computer Science Lecture 2

Deductive Systems & Propositional Logic



Hilbert's 10th problem

Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

Entscheidungsproblem (1928)

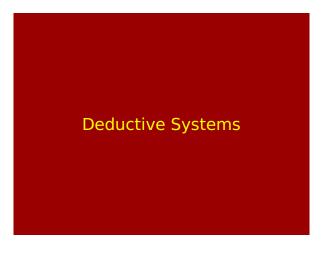
Is there a finitary procedure to determine the validity of a given logical expression?

 $\neg \exists x, y, z, n \in \mathbb{N} : (n \ge 3) \land (x^n + y^n = z^n)$ e.g.

(Mechanization of mathematics)

Is there a finitary procedure to determine if a given multivariate polynomia integral solution? Need to talk about Deductive Systems Entscheidungsproblem (1928) Is there a finitary procedure to determine the validity of a given logical expression e.g. $\neg \exists x, y, z, n \in \mathbb{N} : (n \ge 3)$ (Mechanization of mathematics) Need to talk about Propositional Logic

Hilbert's 10th problem



Carrying \$0, you walk up to an ATM.

The ATM can dispense:

- any number of \$2 bills;
- any number of \$5 bills.

Which amounts can you leave with?

Solution: Any natural number except 1, 3.

This problem gives a simple example of a Deductive System

One **initial object**: The number 0.

Two **deduction rules**: i. If x is deducible, then so is x+2. ii. If x is deducible, then so is x+5.

A Deductive System consists of:

- One or more initial objects
- One or more **deduction rules**

A **deduction rule** specifies how you may create ("deduce") new objects from ones that you have already created ("deduced").

An example involving parentheses

In this system, objects are **strings** made from the characters (and)

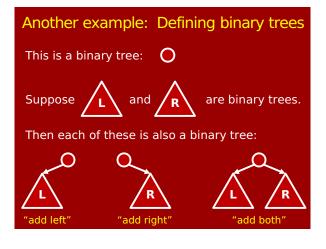
One **initial object**: the string ()

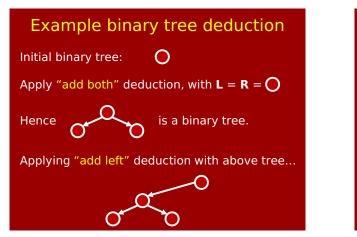
Two **deduction rules**: *Wrap:* from S, may deduce (S) *Concat:* from S and T, may deduce ST

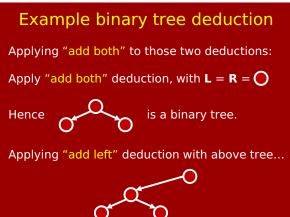
One **initial object**: the string () Two **deduction rules**: *Wrap*: from S, may deduce (S) *Concat*: from S and T, may deduce ST

Problem:	Deduce (()(()))
Solution:	We may deduce:

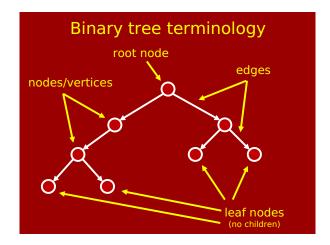
	the may acaacer
	[initial object
	[Wrap applied to ()
))	[Concat applied to () and (()
())))	[Wrap applied to ()(())

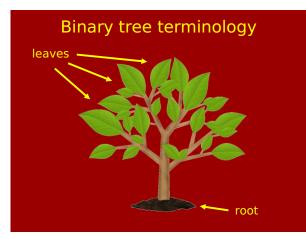






Example binary tree deduction Applying "add both" to those two deductions:





The ATM deductive system

One **initial object**: The number 0. Two **deduction rules**: i. If x is deducible, then so is x+2. ii. If x is deducible, then so is x+5.

The ATM deductive system

Problem: Show that 4 is deducible

Solution: We may deduce:

- 0 [initial amount
- 2 [+2 rule applied to 0]
- 4 [+2 rule applied to 2]

The ATM deductive system

Problem: Show that 7 is deducible

Solution: We may deduce:

- 0 [initial amount
 - 2 [+2 rule applied to 0]
 - 7 [+5 rule applied to 2]

The ATM deductive system **Problem:** Show that 17 is deducible **Solution:** We may deduce:

0	[initial amount
2	[+2 rule applied to 0
4	[+2 rule applied to 2

- 6 [+2 rule applied to 4]
- 8 [+2 rule applied to 6]
- 10 [+2 rule applied to 8]
- 12 [+2 rule applied to 10]
- 17 [+5 rule applied to 12]

If a specific object *is* deducible, you can always (in principle) show it's deducible by "brute force"

The ATM deductive system

Problem: Show that all nonnegative integers n, $n \neq 1$, $n \neq 3$, are deducible.

There are **infinitely** many objects that we need to show are deducible!

We need **one proof** (written in English) that explains why **all** these deductions are possible.

The ATM deductive system

Problem: Show that all nonnegative integers n, $n \neq 1$, $n \neq 3$, are deducible.

Solution:

Lemma: Suppose n is an **even** nonnegative integer. Then n is deducible.

Proof: Write n = 2k, for $k \in \mathbb{N}$. We can deduce n by applying the "+2 rule" k times in succession, starting from 0.

The ATM deductive system

Problem: Show that all nonnegative integers n, $n \neq 1$, $n \neq 3$, are deducible.

Solution:

Lemma: Suppose n is an **even** nonnegative integer. Then n is deducible.

 $n \ge 5$, then n is deducible.

Given such an n, let m = n-5.

Now m is a nonnegative integer (since n \geq 5) and

m is even, since it's the difference of two odd #'s. So by the Lemma, m is deducible.

From this n is deducible, by applying the +5 rule.

The ATM deductive system

Problem: Show that all nonnegative integers n, $n \neq 1$, $n \neq 3$, are deducible.

Solution:

- Question: Have we completely characterized the numbers deducible in the ATM deductive system?
 - No! We have not yet shown that 1 and 3 are **not** deducible!

The ATM deductive system

Problem: Show that 1 and 3 are not deducible.

To show that a certain object is **not** deducible, have to write **one** proof showing that **all** possible deductions fail!

Admittedly, it's kind of "obvious" for 1 and 3 in the ATM deductive system, but let's spell it out rigorously.

The ATM deductive system

Problem: Show that 1 and 3 are not deducible.

Solution:

We start with 1. Suppose for contradiction that 1 is deducible. Since 1 is not an initial amount, it would have to be deduced by either the +5 or +2 rule.

But -4 and -1 are not deducible, since all deducible amounts are nonnegative. [I think this is "obvious".]

Now we show 3 isn't deducible. Suppose for contradiction it is. Since 3 is not an initial amount, it would have to be deduced by either the +5 or +2 rule.

It can't be the +5 rule, because -2 is negative.

And it can't be the +2 rule, because we proved 1 is not deducible.

Parenthesis deductive system

In this system, objects are **strings** made from the characters (and)

One **initial object**: the string ()

Two **deduction rules**: *Wrap*: from S, may deduce (S) *Concat*: from S and T, may deduce ST

Parenthesis deductive system

Suppose I want to show the characterization:

"A string of parenthesis is deducible if and only if it is **balanced**."

What 2 things do I need to prove?

Parenthesis deductive system

"A string of parenthesis is deducible if and only if it is **balanced**."

1. Every string of balanced parentheses can be deduced.

(For this, need to give a method ("algorithm") for generating any given balanced string.)

Any string that can be deduced **is** balanced.
(A pretty straightforward structural induction.)

One final question

"Balanced parentheses" what exactly does that mean?

(You will discuss this in recitation tomorrow!)

Propositional Formulas and Circuits

Propositional Logic Refresher

- It's a model for a simple subset of mathematical reasoning.
- · It's that stuff with formulas like $((\neg x \rightarrow y) \land ((x \lor z) \leftrightarrow y))$

and truth tables.

 It doesn't have "quantifiers": no ∀, ∃. That extension, called "First Order Logic", will be discussed in the next lecture.

Propositional Logic Refresher

First ingredient: Propositional variables

Denoted by letters, sometimes with subscripts. For example, p, w, r, x₁, x₂, x₃, ...

- They stand for basic statements that can be either true (**T**) or false (**F**).
- E.g.: p stands for "I am playing tennis" w stands for "I am watching tennis" r stands for "I am reading about tennis" x_3 stands for "The 3rd input bit is 1"

Propositional Logic Refresher

Second ingredient: Connectives

Not	-
And	Λ
Or	\mathbf{v}
Implies	\rightarrow
If And Only If	\leftrightarrow

When combined with variables, you get formulas. $((\neg p \rightarrow w) \land (\neg w \rightarrow r))$ For example:

"If I'm not playing tennis then I'm watching tennis, and if I'm not watching tennis then I'm reading about tennis."

Formally defining **formulas**

A well-formed formula over propositional variables $x_1, x_2, ..., x_n$ is any string deducible in the following deductive system:

Initial formulas:	Any variable: $x_1, x_2,, x_n$
Deduction rules:	From A, can obtain $\neg A$ From A, B can obtain $(A \land B)$ $(A \lor B)$ $(A \Rightarrow B)$ $(A \Rightarrow B)$
E.g.: Show ((¬p	\rightarrow w) \land (\neg w \rightarrow r)) is a formula.

Equivalently:

A formula is a *binary tree* in which: 2-child nodes are labeled by \land , \lor , \rightarrow , or \leftrightarrow ; 1-child nodes are labeled by \neg ; 0-child nodes (leaves) are labeled by variables. $((\neg p \rightarrow w) \land (\neg w \rightarrow r)) \equiv \bigcirc$ Let's talk about **TRUTH**.

"If potassium is observed then carbon and hydrogen are also observed."

(k→(c∧h))

Q: Is this statement true?

A: The question does not make sense.

"If potassium is observed then carbon and hydrogen are also observed."
(k→(c∧h))
Whether this statement/formula is true/false depends on whether the variables are true/false ("state of the world").
If k is T , c is T , h is F the formula is False .
If k is F. c is F. h is T

... the formula is **True**.

Truth assignment V: setting of **T** or **F** for each variable.

Now given a formula S, we can define its truth value **V**[S] by *structural induction*:

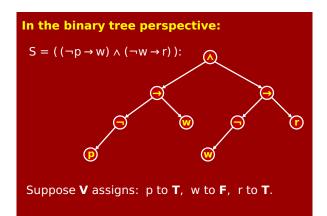
Base case:

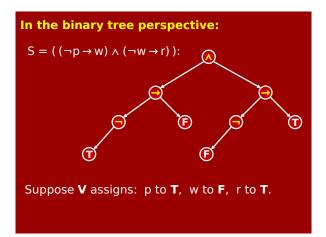
If S is a variable x, then V[S] is just V[x].

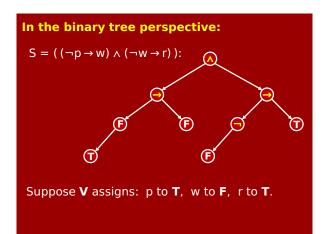
Inductive step:

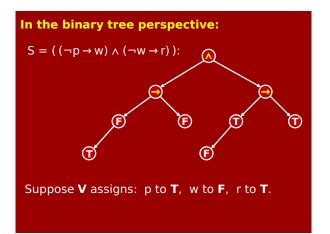
Else S is define by a connective applied to subformulas, and we use the below table:

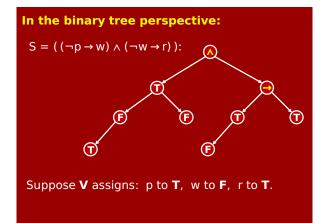
А	В	¬Α	(A∧B)	(A∨B)	(A→B)	(A⇔B)
F	F	Т	F	F	Т	Т
F	Т	Т	F	Т	Т	F
Т	F	F	F	Т	F	F
Т	Т	F	Т	Т	Т	Т

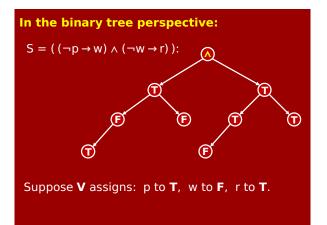


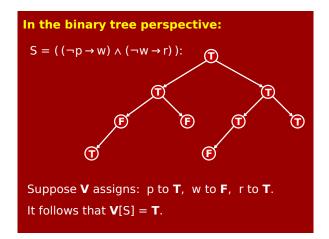












Satisfiability

V satisfies S:
V [S] = T
S is satisfiable :
there exists ${f V}$ such that ${f V}$ [S
S is unsatisfiable :
V[S] = F for all V
S is a tautology :
V[S] = T for all V

= T

All well-formed formulas unsatisfiable $(k \land \neg k)$ "Potassium is observed and potassium is not observed." Satisfiable $(k \to (c \land h))$ $(h \to h)$ "If potassium is observed then carbon and hydrogen are observed."

"If hydrogen is observed then hydrogen is observed."

Tautology: automatically true, for 'purely logical' reasons

Unsatisfiable: automatically false, for purely logical reasons

Satisfiable (but not a tautology):

truth value depends on the state of the world

$S = ((x \rightarrow (y \rightarrow z)) \leftrightarrow ((x \land y) \rightarrow z))$ Truth table

x	У	z	((x→(y→z))↔((x∧y)→z))
F	F	F	
F	F	т	
F	т	F	
F	т	т	
т	F	F	
т	F	т	
т	т	F	
т	т	т	

$\mathsf{S} = ((\mathsf{x} {\rightarrow} (\mathsf{y} {\rightarrow} \mathsf{z})) {\leftrightarrow} ((\mathsf{x} {\wedge} \mathsf{y}) {\rightarrow} \mathsf{z}))$

Truth table

x	У	z	((x→(y→z))↔((x∧y)→z))
F	F	F	т
F	F	т	
F	т	F	
F	т	т	
т	F	F	
т	F	т	
т	т	F	
Т	т	Т	

S is satisfiable!

$\mathsf{S} = ((\mathsf{x} \rightarrow (\mathsf{y} \rightarrow \mathsf{z})) \leftrightarrow ((\mathsf{x} \land \mathsf{y}) \rightarrow \mathsf{z}))$

Truth table

x	у	z	((x→(y→z))↔((x∧y)→z))		
F	F	F	т		
F	F	т	т		
F	т	F	т		
F	т	т	т		
т	F	F	т		
т	F	т	т		
т	т	F	т		
т	т	т	т		
S is a tautology !					

Deciding Satisfiability / Tautology

Truth table method:

Pro: Always works

Con: If S has n variables, takes $\approx 2^n$ time

"P ≠ NP"

Conjectures:

There is **no** polynomial time algorithm that works for every formula.

There is **no** O(1.999ⁿ) time algorithm that works for every formula.

Another open problem about truth tables: who invented them?

Peirce?

Russell?

Wittgenstein? Post?

Łukasiewicz?

Jevons? Ladd–Franklin?

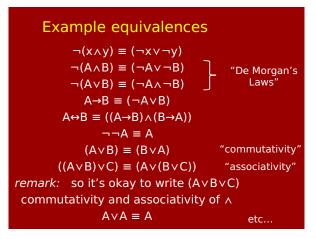
Logical Equivalence

Definition:

Formulas R and S are **equivalent**,

written $R \equiv S$, if V[R] = V[S] for all truth-assignments V.

I.e., their truth tables are exactly the **same**.



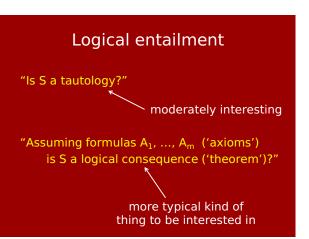
Problem: Show $(((x \rightarrow y) \land x) \rightarrow y)$ is a tautology. **Solution 1**: Truth-table method

Solution 2: Use equivalences:

(((x→y)∧x)→y)

≡ ¬((x→y)∧x)∨y	(using	$A \rightarrow B \equiv \neg A \lor B$	
$\equiv (\neg (x \rightarrow y) \lor \neg x) \lor y$	(using	$\neg(A \land B) \equiv \neg A \lor \neg B$	
$\equiv \neg(x \rightarrow y) \lor (\neg x \lor y)$	(using	$(A \lor B) \lor C \equiv A \lor (B \lor C)$)
$\equiv \neg(\neg x \lor y) \lor (\neg x \lor y)$	(using	A→B ≡ ¬A∨B	
$= \neg S \lor S$, where $S = (-$	¬x∨y)		

And a formula of the form $\neg S \lor S$ is always a tautology.



Logical entailment

Definition:

Formulas $A_1, ..., A_m$ entail formula S, written $A_1, ..., A_m \models S$, if every truth-assignment ς which makes $A_1, ..., A_m$ equal **T** also makes S equal **T**.

"S is a logical consequence of A₁, ..., A_m."

Entailment examples

x, y \models (x \wedge y) A, B \models (A \wedge B) A \models (A \vee B) for any B A, A \to B \models B A \to B, B \to C \models A \to C A \vee x, B \vee \to x \models A \vee B etc.

fact: $A_1, ..., A_m \models S$ iff $(A_1 \land \dots \land A_m) \rightarrow S$ is a tautology

...where we usually write **0** and **1**, rather than **F** and **T**.

Every formula has a corresponding truth table.

$((x \wedge y) \vee (x \wedge z)) \vee (y \wedge z)$

Every formula has a corresponding truth table. y z $((x \wedge y) \vee (x \wedge z)) \vee (y \wedge z)$ 0 0 0 0 ength-n binary strings 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1

Truth table also represents a Boolean function, $f: \{0,1\}^n \rightarrow \{0,1\}$

A Boolean function f: $\{0,1\}^3 \rightarrow \{0,1\}$ can be specified by a truth table. E.g.:

x	У	z	f(x,y,z)	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Or it can be specified by words. E.g.: "f(x,y,z) = 1 iff at least two input bits are 1"

Question:

How many Boolean functions (truth tables) are there on n variables?

Answer: 2^{2ⁿ}

We know each propositional formula on n variables "computes" one such function.

Question:

1

Is every Boolean function (truth table) computed by some propositional formula?

Is every truth table computed by some formula?

x_1	\mathbf{x}_{2}	x_3	x ₄	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

 $x_1 \land x_2 \land x_3 \land x_4$

Is every truth table computed by some formula? $x_1 x_2 x_3 x_4$ 1 0 0 0 0 0 0 0 0 $\neg x_1 \land \neg x_2 \land \neg x_3 \land \neg x_4$ 0 0 0 0

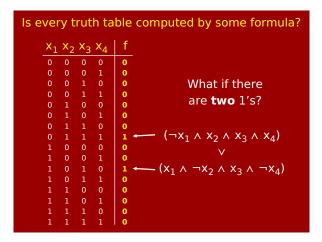
ls e	Is every truth table computed by some formula?							
	x_1	x ₂	x ₃	x ₄	f			
	0	0	0	0	0			
	0	0	0	1	0			
	0	0	1	0	0			
	0	0	1	1	0			
	0	1	0	0	0			
	0	1	0	1	0			
	0	1	1	0	0	$x_1 \land \neg x_2 \land x_3 \land \neg x_4$		
	0	1	1	1	0			
	1	0	0	0	0			
	1	0	0	1	0			
	1	0	1	0	1			
	1	0	1	1	0			
	1	1	0	0	0			
	1	1	0	1	0			
	1	1	1	0	0			
	1	1	1	1	0			

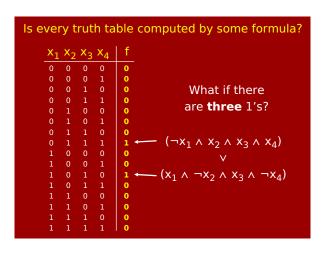
Is every truth ta	able computed by some formula?
x ₁ x ₂ x ₃ x ₄	f
0 0 0 0	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	$\neg x_1 \land x_2 \land x_3 \land x_4$
0 1 1 1	1
1 0 0 0	0
1 0 0 1	0
1 0 1 0	0
1 0 1 1	0
1 1 0 0	0
1 1 0 1	0
1 1 1 0	0
1 1 1 1	l o

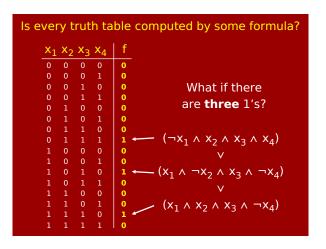
Is every truth table computed by some formula?

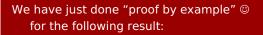
x_1	x ₂	x ₃	x ₄	f
0	0	0	0	
0	0	0	1	
0	0		0	
0	0	1 1	1	
0	1	0	0	
0	1	0		
0	1	1	1 0	
0	1	1 1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1 1	1	
1	1	0	0	
1	1		1	
1 1	1 1	0 1 1	1 0 1	
1	1	1	1	

We can similarly do any truth table with exactly one 1.









Theorem:

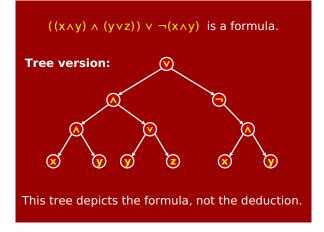
Every Boolean function (truth table) over n variables can be computed by a formula. (And only using \neg , \land , \lor .)

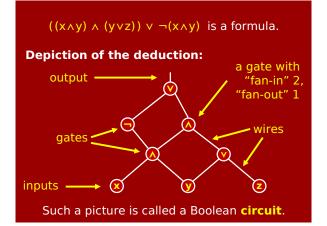
Actually, we missed a case... ...the Boolean function which is always 0. Well, it's computed by $(x_1 \land \neg x_1)$.

Circuits

$((x \land y) \land (y \lor z)) \lor \neg(x \land y)$ is a formula.

Deduction: We can deduce it	as follows:
X	[variable]
у	[variable]
z	[variable]
(x∧y)	$[\land applied to x, y]$
(y∨z)	$[\vee applied to y, z]$
((x∧y) ∧ (y∨z))	[^ of previous two]
¬(x∧y)	[¬ of (x∧y)]
$((x \land y) \land (y \lor z)) \lor \neg (x \land y)$	[v of previous two]





What is the difference between circuits and formulas?

In circuits, nodes (gates) may have fan-out > 1. (In particular, they are "dags", not trees.) Formulas are trees: all nodes have fan-out 1.

Circuits can **reuse** already-computed pieces. Formulas cannot; everything must be "rebuilt". So circuits can be "more efficient".

Deduction viewpoint: The circuit is the deduction. The formula is the last line.

We'll end with a mystery from the field of Theoretical Computer Science.

Circuits are a kind of "programming language". How efficient can they be?

Consider all truth tables with 42 variables.

It's not hard to show that there exists such a truth table (in fact many) such that the smallest circuit computing it requires **at least 100 billion gates.**

But no one explicitly knows such a truth table.

The best explicit example we know is a truth table that requires at least **123** gates.

Study Guide

Deductive systems: definitions characterizations binary tree definitions

Propositional logic: formulas truth assignments valid/satisfiable truth-table method equivalences all functions computable

Circuits: definitions