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15-251: Great Theoretical Ideas in Computer Science

Formalization of Proof

Lecture 3

What is “proof”?

• GORM is the math you’ve been doing all your life

• GORM is what we use in the lectures and homeworks

• GORM proofs are written in English (or another human language)

• In GORM, math statements are either true or false

We try to prove the true ones, disprove the false ones

• GORM proofs are valid if they are:

rigorous, logical, convincing, complete, precise

• This depends on the audience & assumed background!

• Ultimately, GORM proofs are valid if they are accepted

by the community of mathematicians

• That’s OK! But we may also want to try to formalize 

(within GORM) what it means to be a valid proof.

GORM: Good Old Regular Mathematics Four Color Theorem

Any 2-d map of regions can be colored 
with 4 colors so that no adjacent 
regions get the same color.

1852 conjecture:

Four Color Theorem

1879:  Proved by Kempe in Amer. J. of Math

1880:  Alternate proof by Tait in
Trans. Roy. Soc. Edinburgh

1890:  Heawood finds a bug in Kempe’s proof.

1891:  Petersen finds a bug in Tait’s proof.

Kempe’s “proof” was widely acclaimed. 

Four Color Theorem

Heesch showed that the theorem 
could in principle be reduced to 
checking a large number of cases.

1969:

Appel and Haken wrote a massive 
amount of code to compute and 
then check 1936 cases 
(1200 hours of computer time).

Claimed this constituted a proof.

1976:
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Four Color Theorem

Much controversy at the time.  Is this a proof??

Arguments against:

No human could ever hand-check the cases.
Perhaps there’s a bug in the code.
Perhaps there’s a bug in the compiler.
Perhaps there’s a bug in the hardware.
No “insight” is derived –

still don’t know “why” the theorem is true.

Nevertheless, these days, pretty much 
everyone credits Appel & Haken with the proof.

Four Color Theorem

A&H found, classified various errors in their work.
Type 1: few minute fix.  
Type 3: few day fix.

Ulrich Schmidt 1980 master’s thesis:
found thirteen Type 1 errors, one Type 3.

A&H fixed them all (?) in a 1989 book.

1997: “Simpler” computer proof by 
Robertson, Sanders, Seymour, Thomas.

Classification of finite simple groups
(the “prime numbers” of group theory)

Theorem: Every finite simple group is either…

Progress started in late 19th century.

100’s of papers,  10,000–20,000 pages later…

1983:  Gorenstein announces proof is complete.

However, experts knew one piece still missing.

2004:  Aschbacher & Smith finish a 1221-page 
paper, Aschbacher announces proof is complete.

Classification of finite simple groups

Some controversy:  Is the theorem proven?

A ~5000 page, 13-volume series of 
books describing the proof is underway.

Everyone who understands the proof 
will die before it’s properly collated.

Genuine concern:

Inna Capdeboscq:
(The youngest person who knows the proof?)

More anecdotes

1993: Wiles announces proof of 
Fermat’s Last Theorem.

Then a bug is found.

1994: Bug fixed, 100-page paper.

1994: Gaoyong Zhang, Annals of Mathematics:
proves “n=4 case of Busemann-Petty”.

1999: Gaoyong Zhang, Annals of Mathematics:
disproves “n=4 case of Busemann-Petty”.

Because of such incidents,

many mathematicians became

interested in formalizing GORM proofs.
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Formal proofs — prehistory

Euclid’s Elements
(ca. 300 BCE)

Canonized the idea of giving
a rigorous, axiomatic deduction 

for all theorems.

But wasn’t truly rigorous.

Formal proofs — 19th century

True rigor developed.

Culminated in the understanding 

that GORM proofs can be formalized,

using tools like First Order Logic, &

Deductive Systems.

Bertrand Russell Alfred Whitehead

Principia Mathematica, ca. 1912

Starting with axioms of set theory,
developed number theory and some

real analysis, in purely formal logic.

page 379: “1+1=2”

It became generally agreed that
you could rigorously formalize

GORM proofs.

(But nobody wants to!)
(by hand, at least…)

Let’s now study the main tool:

First Order Logic

First Order Logic (FOL)

Plus: For All (∀),  There Exists (∃),  Equals (=)

“constants”,  “relations”,  “functions”

Variables like x now represent 
objects, not truth-values.

First Order Logic =

Propositional Logic (¬, ∧, ∨, →, ↔)

like from last lecture…

“Alex is smarter than everyone”:

∀x IsSmarter(a,x)

relation name:  
stands for a particular relation
(i.e., a mapping:   object(s) ↦ T/F)

constant name:  
stands for a 
particular object

variable:  
stands for an 
object (person)
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“Alex is smarter than everyone”:

∀x IsSmarter(a,x)

“Alex is smarter than everyone else”:

∀x (¬(x=a)→IsSmarter(a,x))

equality (of objects)

propositional logic, as usual

“Alex is smarter than everyone”:

∀x IsSmarter(a,x)

“Alex is smarter than everyone else”:

∀x (¬(x=a)→IsSmarter(a,x))

“Alex’s father is smarter than 
everyone else’s father”:

∀x (¬(x=a)→IsSmarter(Father(a),Father(x)))

function name:  
stands for a mapping, 
object(s) ↦ object

This formalization still has a problem:

What if Alex has a brother?

Vocabulary:   A collection of  constant-names, 
function-names,
relation-names.

Vocabulary from the previous slide:

one constant-name:     a

one function-name:      Father(∙)

one relation-name:      IsSmarter(∙, ∙)

Vocabulary:   A collection of  constant-names, 
function-names,
relation-names.

Another example of a vocabulary:

Example (well-formed) “sentences”:

one constant-name:     a

two function-names:    Next(∙),   Combine(∙, ∙)

one relation-name:      IsPrior(∙, ∙)

∃x (Next(x)=a)

∀x ∀y (IsPrior(x,Combine(a,y)) → (Next(x)=y))

(∀x IsPrior(x,Next(x))) → (Next(a)=Next(a))

Let’s talk about TRUTH.

Q: Is this sentence true?

A: The question does not make sense.

∃x (Next(x)=Combine(a,a))

Whether or not this sentence is true 
depends on the interpretation of the vocabulary.

Interpretation:

Informally, says what objects are 

and what the vocabulary items stand for.
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Q: Is this sentence true?

A: The question does not make sense.

∃x (Next(x)=Combine(a,a))

Whether or not this sentence is true 
depends on the interpretation of the vocabulary.

Interpretation:

Specifies a nonempty set (“universe”) of objects.

Maps each constant-name to a specific object.

Maps each relation-name to an actual relation.

Maps each function-name to an actual function.

∃x (Next(x)=Combine(a,a))

Interpretation #1:

• Universe = all strings of 0’s and 1’s

• a = 1001

• Next(x) = x0

• Combine(x,y) = xy

• IsPrior(x,y) = True iff x is a prefix of y

For this interpretation, 
the sentence is… …False

∃x (Next(x)=Combine(a,a))

Interpretation #2:

• Universe = integers

• a = 0

• Next(x) = x+1

• Combine(x,y) = x+y

• IsPrior(x,y) = True iff x < y

For this interpretation, 
the sentence is… …True

∃x (Next(x)=Combine(a,a))

Interpretation #2:

• Universe = natural numbers

• a = 0

• Next(x) = x+1

• Combine(x,y) = x+y

• IsPrior(x,y) = True iff x < y

For this interpretation, 
the sentence is… …False

Satisfiability / Tautology

Interpretation I satisfies sentence S:      

I [S] = T

S is satisfiable:

there exists I such that I[S] = T

S is unsatisfiable:

I [S] = F for all I

S is a tautology:

I [S] = T for all I

unsatisfiable

All sentences in a given vocabulary

satisfiable

tautology

∃x ¬(Next(x)=Next(x))

∃x (Next(x)=Combine(a,a))

(∀x(x=a))→(Next(a)=a)
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Tautology: automatically true, 
for ‘purely logical’ reasons

Unsatisfiable: automatically false,
for purely logical reasons

Satisfiable (but not a tautology):  

truth value depends 
on the interpretation
of the vocabulary

Problem 1:  Show this is satisfiable.

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

Now (∃y ∀x (x=Next(y))) means

“there’s an integer y such 
that every integer = y+1”.

Let’s pick this interpretation:

Universe = integers,    Next(y) = y+1.

That’s False!  
So the whole sentence becomes True.

Hence the sentence is satisfiable.

Problem 2:  Is it a tautology?

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

There is no “truth table method”. 

You can’t enumerate all possible interpretations!

It seems like you have to use some cleverness…

Problem 2:  Is it a tautology?

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

Solution:     Yes, it is a tautology!

Proof: Let I be any interpretation.

If I [∃y ∀x (x=Next(y))] = F,

then the sentence is True.

If I [∃y ∀x (x=Next(y))] = T,

then every object equals Next(y). 

In that case, I [∀w ∀z (w=z)] = T.

So no matter what, I [the sentence] = T.

Problem 2:  Is it a tautology?

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

Hmm…   It’s really a shame 

that there’s no truth table method.

Is there any “mechanical method”??

Checking tautologies

David HilbertGottlob Frege

&

This means a Deductive System for generating
tautologies in First Order Logic.

invented the idea of
FOL Deductive Calculus

(usually called a “Hilbert System”)
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Open almost any textbook on logic.
Chapter 1 will describe some kind of 

FOL Deductive Calculus, like:

Deduction rule:

Initial tautologies / tautology families:

1. stuff like A∨¬A for any sentence A

2. stuff like ∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b)))

3. stuff like IsR(a)→(∃x IsR(x))

4. blah blah blah, a bunch more obviously tautological

kinds of sentences

From A and A→B can deduce B

Checking tautologies

His 1929 PhD thesis:   Yes!

Easy claim:  Anything deducible is a tautology.
(This is “by design”.)

Question:  is every tautology deducible?

Kurt Gödel

“Gödel’s COMPLETENESS Theorem”

Checking tautologies

Consequence:

There is a purely mechanical algorithm
to verify that a given tautology S 
really is a tautology.

Brute-force search for the shortest
deduction in FOL Deductive Calculus!

Logical entailment

“Is S a tautology of First Order Logic?”

“Assuming sentences A1, …, Am (‘axioms’)

is S a logical consequence (‘theorem’)?”

moderately interesting

more typical kind of
thing to be interested in

Logical entailment

Formulas A1, …, Am entail formula S,  

written A1, …, Am ⊨ S,

if every interpretation I which makes

A1, …, Am equal T also makes S equal T.

Definition:

Equivalently, (A1∧···∧Am)→S is a tautology.

1. Think of some universe you want to reason about.

2. Invent an appropriate vocabulary 

(constant, function, relation names).

3. Start with some axioms which are true under 

the interpretation you have in mind.

4. See what theorems these axioms entail.

(By Gödel’s theorem, equivalent to what you can

deduce from the axioms with FOL Deductive Calculus.)

Formalizing GORM proofs
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Example 1:   Euclidean geometry

Euclid

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously 

in a straight line.

3. To describe a circle with any center and radius.

4. That all right angles are equal to one another.

5. If a straight line falling on two straight lines make the interior 

angles on the same side less than two right angles, the two 

straight lines, if produced indefinitely, meet on that side on 

which are the angles less than the two right angles.

Euclid’s Axioms:

Example 1:   Euclidean geometry

Alfred Tarski

He did it right.

In his interpretation, universe is the points of R2.

Example 1:   Euclidean geometry

∀x1 ∀x2        IsSameLength(x1,x2,x2,x1)

∀x ∀y ∀z IsSameLength(x,y,z,z)→(x=y)

∀x ∀y IsBetween(x,y,x)→(y=x)

“Segment Extension”: ∀x1,x2,y1,y2

∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2)

… 7 more … 

constant-names, function-names: none

relation-names: IsBetween(x,y,z)
IsSameLength(x1,x2,y1,y2)

axioms:

Example 1:   Euclidean geometry

Cool fact proved by Tarski (using GORM):

These 11 axioms are “complete” for 
Euclidean geometry.

For every true statement S in 
Euclidean geometry,

{A1, …, A11} ⊨ S.

Example 2:   Arithmetic of ℕ

∀x ¬(Successor(x)=0)
∀x ∀y (Successor(x)=Successor(y))→(x=y)
∀x Plus(x,0)=x
∀x ∀y Plus(x,Successor(y))=Successor(Plus(x,y))
∀x Times(x,0)=0
∀x ∀y Times(x,Successor(y))=Plus(Times(x,y),x)
“Induction:”  For any parameterized formula F(x),

(F(0)∧(∀x F(x)→F(Successor(x)))) → ∀x F(x)

function-names: Successor(x)
Plus(x,y)
Times(x,y)

axioms:

constant-name: 0

Giuseppe Peano

Question:
How ‘complete’ are those 7 axioms?

Example 2:   Arithmetic of ℕ

Answer based on 125 years of experience:

Pretty darn complete.  

‘Almost all’ true statements about

arithmetic can be deduced from them.

Four-Square Theorem, Weak Goldbach Conjecture,

Prime Number Theorem, Fermat’s Last Theorem…

There are a few intentionally-designed, not-too-crazy

arithmetical theorems not entailed by Peano’s axioms.
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Getting ambitious:  All of GORM??

In early 20th c., mathematicians sought a simple

subject that could capture all GORM topics.

They came up with Set Theory.

It’s extremely hacky and kludgy, but you can

seemingly express all GORM concepts with sets.

Getting ambitious:  All of GORM??

Gross details (don’t study these!)…

Define ordered pairs (x,y) = {{x},{x,y}}, & tuples, relations, functions…

Define 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, …

Define induction based on the natural numbers.

Define addition and multiplication by induction.

Define integers from the natural numbers.

Define rational numbers in terms of pairs of integers.

Define real numbers in terms of sequences of rationals.

Now you can start defining calculus concepts, geometry concepts, 

algebra concepts, …

It’s like programming in COBOL or FORTRAN.

(Type Theory is the superior modern approach.)

Example 3:   Set theory

∀x ∀y ( (∀z   z∈x ↔ z∈y)  →  x = y )

∀x ∀y ∃z (x∈z ∧ y∈z)

… 7 more axiom/axiom families … 

constant-names, 
function-names: none

relation-name:

IsElementOf(x,y)
[“x∈y”]

axioms, catchily known as “ZFC”:

Ernst Zermelo++

Question:
How ‘complete’ are those 9 axioms?

Answer based on 100 years of experience:

Amazingly complete!  

Almost all true statements about math  

(GORM) can be deduced from them.

In particular, everything we will 

prove in 15-251!

Example 3:   Set theory

So you can formalize all of GORM

using ZFC + FOL Deductive Calculus.

However, it’s super-painful to do by hand.

(Remember 1+1=2 on page 379?!)

But we have computers now, you know… Lord Wacker von Wackenfels

(1550−1619)
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Kepler Conjecture

Kepler, 1611: As a New Year’s 
present (???) for his patron, 
Lord Wacker von Wackenfels,

wrote a paper with this conjecture:

The densest way to pack spheres is like this:

Kepler Conjecture

2005:  

Pittsburgher Tom Hales:
120 page proof in 
Annals of Mathematics

Plus code to solve 100,000 distinct optimization 
problems, taking 2000 hours computer time.

Annals recruited a team of 20 referees.
They worked for 4 years. 

Some quit.  Some retired.  One died.
In the end, they gave up.  

But said they were “99% sure” it was a proof.

Kepler Conjecture

Hales:  “I will code up a completely formal 
axiomatic deductive proof, 
checkable by computer.”  

Open source “Project Flyspeck”:  2004—

Just finished last August!!

Computer-assisted proof

Proof assistant software like 
HOL Light, Mizar, Coq, Isabelle, Agda

does two things:  

1. Checks that a proof deduced
in FOL Deductive Calculus

(or typed lambda calculus theory)  is valid.

2.  Helps user code up such proofs.

Developing proof assistants is an active 
area of CS theory research, especially at CMU!

Computer-assisted proof

Suppose, e.g., HOL Light certifies a formal proof. 
Can you trust it?

• You don’t need to trust the million-line proof.

• You don’t need to trust the process used to

generate that proof.

• You just need to trust HOL Light’s 430-line

program for verifying FOL deductions.

Computer-formalized proofs

Fundamental Theorem of Calculus (Harrison)

Fundamental Theorem of Algebra (Milewski)

Prime Number Theorem (Avigad @ CMU, et al.)

Gӧdel’s Incompleteness Theorem (Shankar)

Jordan Curve Theorem (Hales)

Brouwer Fixed Point Theorem (Harrison)

Four Color Theorem (Gonthier)

Feit-Thompson Theorem (Gonthier)

Kepler Conjecture (Hales++)
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Variable R : real_model.

Theorem four_color : (m : (map R)) 

(simple_map m) -> (map_colorable (4) m). 

Proof. 

Exact (compactness_extension four_color_finite). 

Qed.

+ about 60,000 more lines

Proof of the Four Color Theorem First order logic:

well-formed sentences   

and vocabulary

interpretations

satisfiability/tautology

the idea of Deductive
Calculus and Gödel’s
Completeness Thm.

entailment

Study Guide


