15-251: Great Theoretical Ideas in Computer Science Lecture 4

Finite Automata

Inspirational quotation \#1:
"An algorithm is a finite answer to an infinite number of questions"

Stephen Kleene

What is computation? What is an algorithm?

How can we mathematically define them?

Inspirational quotation \#2:

We'll define last 3 terms now.
We'll save algorithm for later.

What is a computational problem?

We'll start with some examples.

Instance
(also known as input)

a	Yes
l0101	Yes
selfless	No
dammitimmad	Yes
zxckallkdsflsdkf	No
parahazlramarızaharap	Yes

These are examples of decision problems: Problems where the solution is Yes / No.
(Also known as True / False,

Example problem 3:
MULTIPLICATION

Instance
$\begin{array}{rr}3, & 7 \\ 610, & 25 \\ 50, & 610 \\ 15251, & 252 \\ 12345679, & 9\end{array}$
Solution
21
15250
30500
3843252
111111111

Representing problems

The instances of a problem can be:

- numbers
- strings
- pairs of numbers
- lists of strings
- trees
- graphs
- images
- ...

As you know...
Can all be conveniently encoded by strings.
Even just by binary (0/1) strings.

String notation

Alphabet: A nonempty finite set Σ of symbols. $\Sigma=\{0,1\}$ is a popular choice.

String: A finite sequence of 0 or more symbols.
(or "word") The length-0 string is denoted ε.
Σ^{n} means all strings over Σ of length n. Σ^{*} means all strings over Σ.

Language: A collection of strings.
In other words any subset $L \subseteq \Sigma^{*}$.

Representing problems

A decision problem can be thought of as

$$
f: \Sigma^{*} \rightarrow\{\text { No, Yes }\}
$$

or equivalently as a language

$$
L \subseteq \Sigma^{*}
$$

$L=\left\{x \in \Sigma^{*}: f(x)=\right.$ Yes $\} \quad f(x)= \begin{cases}\text { Yes } & \text { if } x \in L \\ \text { No } & \text { if } x \notin L\end{cases}$
E.g.: Palindrome $=\left\{x \in \Sigma^{*}: x=\operatorname{Reverse}(x)\right\}$

Representing problems

We can encode instances/solutions with strings.

Thus we can think of a problem as a function

$$
\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}
$$

mapping instances to solutions.

A decision problem can be thought of as

$$
f: \Sigma^{*} \rightarrow\{\text { No, Yes }\}
$$

What is computation? What is an algorithm?

This lecture:
A very simple computational model:
Deterministic Finite Automata
It's so wimpy, it can only implement
an extremely restricted kind of algorithm.
Has some interesting applications.
A good warmup before we study general models of computations next lecture.

Deterministic Finite Automata (DFAs)

Computing with DFAs

Let M be a DFA, using alphabet Σ.
We think of M as a computing mechanism, which "accepts" some strings in Σ^{*} and "rejects" the others.

Definition: $L(M)=\left\{x \in \Sigma^{*}: M\right.$ accepts $\left.x\right\}$
Called the "language decided/accepted by M".
If P is a decision problem,
we say M solves it if $L(M)=P$.

What language does this DFA decide?
All binary strings with even length.
M is the following DFA,
with alphabet $\Sigma=\{a, b, c\}$:

$$
L(M)=\{x: x \text { ends in a } 0\} \cup\{\varepsilon\}
$$

$$
\mathrm{L}(\mathrm{M})=\{\mathrm{a}, \mathrm{~b}, \mathrm{cb}, \mathrm{cc}\} \subseteq\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*}
$$

Formal definition of DFAs

Let's give a very formal definition of DFAs.

Having some notations can help us reason about them.

Also illustrates that we can completely formalize this notion of computation.

What language does this DFA decide?

All binary strings with an even number of 1's.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where Q is a nonempty finite set of states,
Σ is an alphabet,
$\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is the transition function,
$\mathrm{q}_{0} \in \mathrm{Q}$ is the start state,
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of accepting states.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

$$
\delta: Q \times\{0,1\} \rightarrow \mathrm{Q} \text { is... }
$$

$\boldsymbol{\delta}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{q}_{\mathbf{0}}$	\mathbf{q}_{0}	\mathbf{q}_{1}
$\mathbf{q}_{\mathbf{1}}$	q_{2}	q_{2}
$\mathbf{q}_{\mathbf{2}}$	q_{3}	q_{2}
$\mathbf{q}_{\mathbf{3}}$	q_{0}	q_{2}

DFA-construction practice:

$$
\begin{aligned}
& U=\{110,101\} \\
& U^{C}=\{0,1\}^{*} \backslash\{110,101\} \\
& P=\left\{X \in\{0,1\}^{*}: X \text { starts and ends with same bit }\right\} \\
& D=\left\{X \in\{0,1\}^{*}:|x| \text { divisible by } 2 \text { or by } 3\right\} \\
& S=\{\varepsilon, 110,110110,110110110,110110110110, \ldots\} \\
& G=\left\{X \in\{0,1\}^{*}: X \text { contains the substring } 110\right\} \\
& C=\left\{X \in\{0,1\}^{*}: 10 \text { and } 01 \text { occur equally often in } x\right\}
\end{aligned}
$$

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\Sigma=\{0,1\}$
δ we'll come back to
q_{0} is the start state

$$
F=\left\{q_{1}, q_{2}\right\}
$$

Formal definition of DFAs

Let $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \cdots \mathrm{w}_{\mathrm{n}}$, where each $\mathrm{w}_{\mathrm{i}} \in \Sigma$.
We say that M accepts string w if:
There exist states $r_{0}, r_{1}, r_{2}, \ldots, r_{n} \in Q$ such that:

- $r_{0}=q_{0}$, the initial state;
- $\delta\left(r_{t-1}, w_{t}\right)=r_{t}$ for all $t=1,2,3, \ldots, n$;
- $r_{n} \in F$ (the accepting states).

Otherwise we say M rejects w.
The sequence $r_{0}, r_{1}, r_{2}, \ldots, r_{n}$ is called the computation trace.

Regular Languages

Definition:
A language $L \subseteq \Sigma^{*}$ is regular if there is
a DFA which decides it.

Questions:

1. Are all languages regular?
2. Are there other ways to tell if L is regular?

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Notation:

If $s \in \Sigma$ is a symbol and $n \in \mathbb{N}$ then s^{n} denotes the string sss $\cdots \mathrm{s}$ (n times).
E.g., s^{3} means sss, s^{5} means sssss, s^{1} means $s, \quad s^{0}$ means ε, etc.

Thus $L=\{\varepsilon, 01,0011,000111,00001111, \ldots\}$.

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Intuition:

For a DFA to decide L, it seems like it needs to "remember" how many 0's it sees at the beginning of the string, so that it can "check" there are equally many 1's.

But a DFA has only finitely many states shouldn't be able to handle arbitrary n.

But we need to be careful: the following language is regular:

$$
C=\left\{x \in\{0,1\}^{*}: 10 \text { and } 01 \text { occur equally often in } x\right\}
$$

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Warmup: No DFA with, say, 7 states can decide L.

Input: 0000000000000111111111111

Transitions?
Accept states? Let's keep it hazy.

Transitions? Accept states? Let's keep it hazy.

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Warmup: No DFA with, say, 7 states can decide L. Input: 0000000000000111111111111

Transitions?
Accept states?
Let's keep it hazy.

Transitions? Accept states? Let's keep it hazy

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Warmup: No DFA with, say, 7 states can decide L. Input: 0000000000000111111111111

q_{3}
q_{4}

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Warmup: No DFA with, say, 7 states can decide L. Input: 0000000000000111111111111 \uparrow

Transitions? Accept states? Let's keep it hazy.

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Warmup: No DFA with, say, 7 states can decide L. Input: 0000000000000111111111111

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Warmup: No DFA with, say, 7 states can decide L. Input: $0000000 \longrightarrow \begin{aligned} & \text { If the rest of the input is actually } \\ & 1111111, \text { the DFA better accept }\end{aligned}$
 difference between starting 00 and starting 0000000

q_{6} Warmup: No DFA with, say, 7 states can decide L. Input: $00 \longrightarrow \begin{aligned} & \text { If the rest of the input is actually } \\ & \text { 1111111, the DFA better } / \text { accept }\end{aligned}$
starting 00 and starting 0000000

not

\pm

Proving a language L is not regular

Most of the time, the proof looks like this:

1. Assume for contradiction there is a DFA M which decides language L.
2. Argue (usually by Pigeonhole) there are two strings x and y which reach the same state in M.
3. Show there is a string z such that $x z \in L$ but $y z \notin L$. Contradiction, since M acts the same (accept/reject) on both.

Regular Languages

Definition:

A language $L \subseteq \Sigma^{*}$ is regular if there is
a DFA which decides it.

Questions:

1. Are all languages regular?
2. Are there other ways to tell if L is regular?

Union Theorem

Definition:

Let L_{1} and L_{2} be any languages.
Their union, $L_{1} \cup L_{2}$, is $\left\{x: x \in L_{1}\right.$ or $\left.x \in L_{2}\right\}$.

Union Theorem:
If L_{1} and L_{2} are both regular languages
over Σ then so is $L_{1} \cup L_{2}$.

Input: ${ }_{\uparrow}^{101001}$

$\xrightarrow{M_{2}} \xrightarrow{0,1} p_{0} \xrightarrow{0,1} p_{0}$
$1 \uparrow{ }_{1}$
(add >0

Union Theorem 】

Make a DFA keeping track of both at once.

$1 \uparrow 1$
(qodd) 0

Union Theorem

Make a DFA keeping
track of both at once.

Union Theorem

Input: 101001

Union Theorem
Input: 101001

Union Theorem

Input: 101001

Union Theorem

Input: 101001

Union Theorem

Input: 101001
Accept.

Union Theorem

Input: 101001
\uparrow

Union Theorem

Input: 101001
\uparrow

Union Theorem

Formal proof:
Suppose L_{1} is decided by $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
Suppose L_{2} is decided by $M_{2}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}{ }^{\prime}, F^{\prime}\right)$.
Define the DFA $M=\left(Q \times Q^{\prime}, \Sigma, \beta,\left(q_{0}, q_{0}{ }^{\prime}\right), G\right)$,

$$
\text { where } G=\left\{\left(q, q^{\prime}\right): q \in F \text { or } q^{\prime} \in F^{\prime}\right\}
$$

$$
\text { and } \beta\left(\left(q, q^{\prime}\right), c\right)=\left(\delta(q, c), \delta^{\prime}\left(q^{\prime}, c\right)\right) \text {. }
$$

Then...(it's not hard to see that)... $\mathrm{L}(\mathrm{M})=\mathrm{L}_{1} \mathrm{U} \mathrm{L}_{2}$.

More "closure" theorems

Theorem: $L_{1} \cup L_{2}$ is regular if L_{1}, L_{2} are.
"Concatenation": $L_{1} \cdot L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}$
Theorem: $L_{1} \cdot L_{2}$ is regular if L_{1}, L_{2} are.
"Star": $L^{*}=\left\{x_{1} x_{2} \cdots x_{k}: k \geq 0\right.$, each x_{i} in $\left.L\right\}$
Theorem: L^{*} is regular if L is.

A Deductive System for regular languages
Objects: Languages over alphabet Σ
Initial objects: $\quad \varnothing, \quad\{a\}$ for each $a \in \Sigma$
Deduction rules:
From L_{1}, L_{2}, can deduce $L_{1} \cup L_{2}$ From L_{1}, L_{2}, can deduce $L_{1} \cdot L_{2}$ From L, can deduce L*

From the previous slide, we know that any deducible language is regular.

The Regular Operations

Theorem: $L_{1} \cup L_{2}$ is regular if L_{1}, L_{2} are.
Theorem: $L_{1} \cdot L_{2}$ is regular if L_{1}, L_{2} are.
Theorem: L^{*} is regular if L is.

The latter two theorems are somewhat more tricky to prove.

You will prove them on the homework!

A Deductive System for regular languages
Objects: Languages over alphabet Σ
Initial objects: $\quad \varnothing, \quad\{a\}$ for each $a \in \Sigma$
Deduction rules:
From L_{1}, L_{2}, can deduce $L_{1} \cup L_{2}$ From L_{1}, L_{2}, can deduce $L_{1} \cdot L_{2}$ From L, can deduce L*

Fact: Every regular language is deducible.
l.e., if \exists a DFA deciding L, then you can deduce L.

Proving this fact is also a little tricky.

Regular Expressions

A regular expression over Σ (say, $\{a, b\}$) is something that looks like this:

$$
a(a \cup b)^{*} a \cup b(a \cup b)^{*} b \cup a \cup b
$$

It is a syntactic representation of the deduction of a regular language in the Deductive System.

Also stands for the deduced language; e.g., the regular expression above stands for $\left\{x \in\{a, b\}^{*}: x\right.$ starts \& ends with same char $\}$.

Regular Expressions

Commonly used in string searching (e.g., grep).
You'll also see some shorthands in practice:
| instead of U
R^{+}for RR^{*}
$\varepsilon \quad$ for \varnothing^{*}
Σ or . for the union of all single characters
$R^{n} \quad$ for RRR…R (n times)
R ? for ($R \mid \varepsilon$)
and more...

String Searching

The simplest string searching problem:
Instance: Text T, length n . Substring w , length k.
Solution: Yes/No: Does w occur in T?

Naive algorithm:

$$
T=a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots, a_{n}
$$

Running time: about nk steps

String Searching

Instance: Text T, length n . Substring w , length K .
Solution: Yes/No: Does w occur in T?
Automaton solution:
The language $\Sigma^{*} \mathrm{w} \Sigma^{*}$ is regular!
There is some DFA M_{w} which decides it.
Once you build M_{w}, feed in T : running time is about n steps!

Time to build M_{w} ?
Knuth-Morris-Pratt '77: \# steps ~ k

Finite automata - to the max

Finite automata were first studied in the 1940's in the context of neurophysiology.

McCulloch \& Pitts

String Searching

Instance: Text T, length n . Substring w , length K . Solution: Yes/No: Does w occur in T?

Automaton solution:
The language $\Sigma^{*} w \Sigma^{*}$ is regular!
There is some DFA M_{w} which decides it.
Once you build M_{w}, feed in T : running time is about n steps!

Time to build M_{w} ?
There's a simple alg. running in $\sim k^{3}$ steps.

String Searching

Instance: Text T, length n. Substring w, length k. Solution: Yes/No: Does w occur in T?

Finite automata - to the max

'40s \& '50s: further studied by mathematicians, linguists, electrical engineers

1959: DFAs codified \& this lecture's results proved by Michael Rabin \& Dana Scott

Finite automata - to the max

Rabin \& Scott also invented DFAs with certain
"magical superpowers"
which you'll investigate on the homework.

Actually, they showed that adding these superpowers does not increase the set of languages accepted by DFAs.

For this they won the Turing Award.

Finite automata - to the max

A further generalization of DFAs:
"nondeterministic pushdown automata".
These decide the "context-free languages".

A further further generalization:
"linear bounded automata".
These decide the "context-sensitive languages".

Definitions:
Problems, instances, strings, languages.
DFAs.
Regular operations.
Regular expressions.
Theorem/proof: $0^{n} 1^{n}$ is not regular. Union Theorem.

Practice:
Building/analyzing DFAs.

Finite automata - to the max

A further further further generalization:
"Turing Machines".

These decide the
"decidable languages".

We discuss them in the next lecture!

