

What is **computation**? What is an **algorithm**?

How can we mathematically define them?

Inspirational quotation #1:

"An algorithm is a finite answer to an infinite number of questions"

Stephen Kleene

Inspirational quotation #2:

We'll save <u>algorithm</u> for later.

Example problem 1: PRIMALITY

Instance (also known as input)	Solution
	Yes
	Yes
•••	•••
42	
••••	•••
251	Yes
•••	•••
17014118346046923173168730371588410572	7 Yes

What is a computational **problem**?

We'll start with some examples.

Example problem 2: PALINDROME

Instance	Solution	
(also known as input)		
	Yes	
10101	Yes	
selfless		
dammitimmad	Yes	
zxckallkdsflsdkf		
parahazıramarızaharap	Yes	

These are examples of <u>decision problems</u>: Problems where the solution is Yes / No.

> (Also known as True / False, 1 / 0, accept / reject.)

Example problem 3: **MULTIPLICATION**

Instar	ice	Solution
З,		21
610,	25	15250
50,	610	30500
15251,	252	3843252
12345679,		111111111

Example problem 4: SORTING

Instance

Solution

[Anil, doesn't, mind, vanilla, yogurt]

A problem is a collection of (naturally related) instances and solutions.

Representing problems

The instances of a problem can be:

- numbersstrings
- pairs of numbers
- lists of stringstrees
- graphs
- images

As you know...

Can all be conveniently encoded by **strings**. Even just by **binary** (0/1) strings.

String notation

Alphabet: A nonempty finite set Σ of symbols. $\Sigma = \{0,1\}$ is a popular choice.

Language: A collection of strings. In other words any subset $L \subseteq \Sigma^*$.

Representing problems

We can encode instances/solutions with strings.

Thus we can think of a **problem** as a **function** $f: \Sigma^* \to \Sigma^*$ mapping instances to solutions.

A **decision problem** can be thought of as $f: \Sigma^* \to \{No, Yes\}$

Representing problems A decision problem can be thought of as $f: \Sigma^* \rightarrow \{No, Yes\}$ or equivalently as a language $L \subseteq \Sigma^*$ $L = \{x \in \Sigma^* : f(x) = Yes\}$ $f(x) = \begin{cases} Yes & \text{if } x \in L \\ No & \text{if } x \notin L \end{cases}$ E.g.: PALINDROME = $\{x \in \Sigma^* : x = \text{Reverse}(x)\}$

What is **computation**? What is an **algorithm**?

This lecture:

A very simple computational model: Deterministic Finite Automata

It's so wimpy, it can only implement an extremely restricted kind of algorithm.

Has some interesting applications.

A good warmup before we study general models of computations next lecture.

Computing with DFAs

Let M be a DFA, using alphabet Σ .

We think of M as a computing mechanism, which "accepts" some strings in Σ^* and "rejects" the others.

Definition: $L(M) = \{x \in \Sigma^* : M \text{ accepts } x\}$

Called the "language decided/accepted by M".

If P is a decision problem, we say M solves it if L(M) = P.

What language does this DFA decide?

All binary strings with an even number of 1's.

What language does this DFA decide? All binary strings with even length.

Formal definition of DFAs

Let's give a very formal definition of DFAs.

Having some notations can help us reason about them.

Also illustrates that we can completely formalize this notion of computation.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$\mathsf{M} = (\mathsf{Q}, \Sigma, \delta, \mathsf{q}_0, \mathsf{F}$$

where Q is a nonempty finite set of states, Σ is an alphabet, $\delta : Q \times \Sigma \rightarrow Q$ is the transition function, $q_0 \in Q$ is the start state, $F \subseteq Q$ is the set of accepting states.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple: $M = (Q, \Sigma, \delta, q_0, F)$

 $Q = \{q_0, q_1, q_2, q_3\}$ $\Sigma = \{0,1\}$ δ we'll come back to q_0 is the start state $F = \{q_1, q_2\}$

 q_1

 \mathbf{q}_2

q₃

 q_2

 \mathbf{q}_3

 q_0

 q_2

 q_2

 q_2

Formal definition of DFAs

Let $w = w_1 w_2 w_3 \cdots w_n$, where each $w_i \in \Sigma$.

We say that M accepts string w if:

There exist states r_0 , r_1 , r_2 , , ..., $r_n \in Q$ such that:

- $r_0 = q_0$, the initial state;
- $\delta(r_{t-1}, w_t) = r_t$ for all t = 1, 2, 3, ..., n;
- $r_n \in F$ (the accepting states).

Otherwise we say M rejects w.

The sequence r_0 , r_1 , r_2 , , ..., r_n is called the computation trace.

DFA-construction practice:

 $U = \{110, 101\}$

- $U^{c} = \{0,1\}^{*} \setminus \{110, 101\}$
- $P = {x \in {0,1}^* : x \text{ starts and ends with same bit}}$
- $D = \{x \in \{0,1\}^* : |x| \text{ divisible by 2 or by 3} \}$
- $S \,=\, \{\epsilon,\, 110,\, 110110,\, 110110110,\, 110110110110,\, \ldots\}$
- $G = {x \in {0,1}^* : x \text{ contains the substring 110}}$
- $C = \{x \in \{0,1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x\}$

Regular Languages

Definition:

A language $L \subseteq \Sigma^*$ is **regular** if there is a DFA which decides it.

Questions:

- 1. Are all languages regular?
- 2. Are there other ways to tell if L is regular?

Theorem: $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular

Notation:

If $s \in \Sigma$ is a symbol and $n \in \mathbb{N}$ then s^n denotes the string sss…s (n times).

E.g., s^3 means sss, s^5 means ssss, s^1 means s, s^0 means ϵ , etc.

Thus $L = \{\epsilon, 01, 0011, 000111, 00001111, ...\}.$

Theorem: $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular

Intuition:

- For a DFA to decide L, it *seems* like it needs to "remember" how many 0's it sees at the beginning of the string, so that it can "check" there are equally many 1's.
- But a DFA has only finitely many states shouldn't be able to handle arbitrary n.

But we need to be careful: the following language is regular: $C = \{x \in \{0,1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x\}$

Theorem: L = $\{0^n1^n : n \in \mathbb{N}\}$ is not regular Warmup: No DFA with, say, 7 states can decide L. Input: 00000000000011111111111111 (q_1) (q_2) (q_3) (q_6) DFA can't tell the difference between starting 00 and starting 0000000

Theorem: $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular

Full proof:

Suppose for contradiction DFA M decides L using, say, k states. Let r_i denote the state M reaches after processing 0^i . By Pigeonhole, there is a repeat among r_0 , r_1 , r_2 , ..., r_k . So say that $r_s = r_t$ for some $0 \le s \ne t \le k$.

- Since $0^{s}1^{s} \in L$, starting from r_{s} and processing 1^{s} causes M to reach an accepting state.
- So on input 0^t1^s, M will process 0^t, reach state $r_t = r_s$, process 1^s, and therefore reach an accepting state.

But $0^{t}1^{s} \notin L$ since $s \neq t$, a contradiction.

Proving a language L is not regular

Most of the time, the proof looks like this:

- 1. Assume for contradiction there is a DFA M which decides language L.
- Argue (usually by Pigeonhole) there are two strings x and y which reach the same state in M.
- Show there is a string z such that xz∈L but yz∉L. Contradiction, since M acts the same (accept/reject) on both.

Regular Languages

Definition:

A language $L \subseteq \Sigma^*$ is **regular** if there is a DFA which decides it.

Questions:

- 1. Are all languages regular?
- 2. Are there other ways to tell if L is regular?

Union Theorem

Definition:

Let L_1 and L_2 be any languages. Their union, $L_1 \cup L_2$, is $\{x : x \in L_1 \text{ or } x \in L_2\}$.

Union Theorem:

If L_1 and L_2 are both regular languages over Σ then so is $L_1 \cup L_2$.

Union Theorem

Formal proof:

Suppose L₁ is decided by M₁ = (Q, Σ , δ , q_0 , F). Suppose L₂ is decided by M₂ = (Q', Σ , δ' , q_0' , F/). Define the DFA M = (Q×Q', Σ , β , (q_0 , q_0'), G), where G = {(q,q') : q \in F **or** q' \in F'} and β ((q,q'), c) = (δ (q,c), δ' (q',c)).

Then...(it's not hard to see that)... $L(M) = L_1 \cup L_2$.

More "closure" theorems

Theorem: $L_1 \cup L_2$ is regular if L_1 , L_2 are.

"Concatenation": $L_1 \cdot L_2 = \{xy : x \in L_1, y \in L_2\}$ Theorem: $L_1 \cdot L_2$ is regular if L_1, L_2 are.

"Star": $L^* = \{ x_1 x_2 \cdots x_k : k \ge 0, each x_i in L \}$ Theorem: L^* is regular if L is.

The Regular Operations

Theorem: $L_1 \cup L_2$ is regular if L_1 , L_2 are. Theorem: $L_1 \cdot L_2$ is regular if L_1 , L_2 are. Theorem: L^* is regular if L is.

The latter two theorems are somewhat more tricky to prove.

You will prove them on the homework!

A Deductive System for regular languages

Objects: Languages over alphabet Σ Initial objects: Ø, {a} for each $a \in \Sigma$

Deduction rules:

From L_1 , L_2 , can deduce $L_1 \cup L_2$ From L_1 , L_2 , can deduce $L_1 \cdot L_2$ From L, can deduce L^{*}

From the previous slide, we know that any deducible language is regular.

A Deductive System for regular languages

Objects:	Languages over alphabet Σ		
Initial objects:	Ø,	a } for each a∈Σ	
Deduction rule	ec.		

From L_1 , L_2 , can deduce $L_1 \cup L_2$ From L_1 , L_2 , can deduce $L_1 \cdot L_2$ From L, can deduce L^{*}

Fact: Every regular language is deducible.
I.e., if ∃ a DFA deciding L, then you can deduce L.
Proving this fact is also a little tricky.

Regular Expressions

A **regular expression** over Σ (say, {a,b}) is something that looks like this:

a(aUb)*a U b(aUb)*b U a U b

It is a syntactic representation of the deduction of a regular language in the Deductive System.

Also stands for the deduced language; e.g., the regular expression above stands for ${x \in {a,b}^* : x \text{ starts } \& \text{ ends with same char}}.$

Regular Expressions

Commonly used in string searching (e.g., grep).

You'll also see some shorthands in practice:

String Searching

The *simplest* string searching problem:

Instance: Text T, length n. Substring w, length k. Solution: Yes/No: Does w occur in T?

Naive algorithm:

Running time: about nk steps

String Searching

Instance: Text T, length n. Substring w, length k. Solution: Yes/No: Does w occur in T?

Automaton solution:

The language $\Sigma^* w \Sigma^*$ is regular! There is some DFA M_w which decides it. Once you build M_w, feed in T: running time is about n steps!

Time to build M_w?

There's a simple alg. running in $\sim k^3$ steps.

String Searching

Instance: Text T, length n. Substring w, length k. Solution: Yes/No: Does w occur in T?

Automaton solution:

The language $\Sigma^* \le \Sigma^*$ is regular! There is some DFA M_w which decides it. Once you build M_w, feed in T: running time is about n steps!

Time to build M_w ? Knuth-Morris-Pratt '77: # steps ~ k

String Searching

Instance: Text T, length n. Substring w, length k. Solution: Yes/No: Does w occur in T?

Pittsburgh native, CMU bachelor's, CMU professor.

Knuth–Morris–Pratt '77: # steps ~ k

Finite automata — to the max

Finite automata were first studied in the 1940's in the context of neurophysiology.

McCulloch & Pitts

Finite automata — to the max

'40s & '50s: further studied by mathematicians, linguists, electrical engineers

1959: DFAs codified & this lecture's results proved by Michael Rabin & Dana Scott

CMU prof. emeritus

Finite automata — to the max

Rabin & Scott also invented DFAs with certain **"magical superpowers"** which you'll investigate on the homework.

Actually, they showed that adding these superpowers does not increase the set of languages accepted by DFAs.

For this they won the **Turing Award**.

Finite automata — to the max

A further generalization of DFAs: "nondeterministic pushdown automata".

These decide the "context-free languages".

A further further generalization: "linear bounded automata".

These decide the "context-sensitive languages".

Finite automata — to the max

A further further further generalization: "Turing Machines".

These decide the "decidable languages".

We discuss them in the next lecture!

Study Guide

Definitions: Problems, instances, strings, languages.

DFAs. Regular operations. Regular expressions.

Theorem/proof: 0ⁿ1ⁿ is not regular. Union Theorem.

Practice: Building/analyzing DFAs.