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15-251: Great Theoretical Ideas in Computer Science

Finite Automata

Lecture 4
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What is computation?

What is an algorithm?

How can we mathematically define them?

Inspirational quotation #1:

“An algorithm is a finite 
answer to an infinite 
number of questions”

Stephen Kleene

Inspirational quotation #2:

“An algorithm is a finite 
answer to an infinite 
number of questions”

me

An algorithm solves a problem

if it gives the correct solution

on every instance.

We’ll define last 3 terms now.

We’ll save algorithm for later.

What is a computational problem?

We’ll start with some examples.

Example problem 1:

PRIMALITY

Instance
(also known as input)

Solution

0         

1

2         

3         

4         

•••         

42         

•••         

251         

•••         

170141183460469231731687303715884105727

No

No

Yes

Yes

No

•••

No

•••

Yes

•••

Yes
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Example problem 2:

PALINDROME

Instance
(also known as input)

Solution

a

10101

selfless

dammitimmad

zxckallkdsflsdkf

parahazıramarızaharap

Yes

Yes

No

Yes

No

Yes

These are examples of decision problems:

Problems where the solution is Yes / No.

(Also known as       True / False,  

1 / 0,  

accept / reject.) 

Example problem 3:

MULTIPLICATION

Instance Solution

3,   7

610,  25

50, 610

15251, 252

12345679,   9  

21

15250

30500

3843252

111111111

Example problem 4:

SORTING

Instance

Solution

[vanilla, mind, Anil, yogurt, doesn’t]

[Anil, doesn’t, mind, vanilla, yogurt]

A problem is a collection of

(naturally related)

instances and solutions.

Representing problems

The instances of a problem can be:
• numbers

• strings

• pairs of numbers

• lists of strings

• trees

• graphs

• images

• …

As you know…

Can all be conveniently encoded by strings.

Even just by binary (0/1) strings.



3

String notation

Alphabet:   A nonempty finite set Σ of symbols.

Σ = {0,1} is a popular choice.

String:  A finite sequence of 0 or more symbols.

The length-0 string is denoted ϵ.

Σn means all strings over Σ of length n.

Σ* means all strings over Σ.

Language:  A collection of strings.

In other words any subset L ⊆ Σ*.

(or “word”)

Representing problems

We can encode instances/solutions with strings.

Thus we can think of a problem as a function

f : Σ* → Σ*

mapping instances to solutions.

A decision problem can be thought of as

f : Σ* → {No, Yes}

A decision problem can be thought of as

f : Σ* → {No, Yes}

Representing problems

or equivalently as a language

L  ⊆  Σ*

L = {x∈Σ* : f(x) = Yes}

E.g.:  PALINDROME = {x∈Σ* : x = Reverse(x)}

What is computation?

What is an algorithm?

This lecture:  

A very simple computational model:

Deterministic Finite Automata

It’s so wimpy, it can only implement 

an extremely restricted kind of algorithm.

Has some interesting applications.

A good warmup before we study general

models of computations next lecture.

Deterministic Finite Automata (DFAs)

A DFA over alphabet

Σ={0,1} is something

that looks like this:

0
0,1

00

1

1

1

0111 111

11

1ϵ

DFA accepts its input 

if the process ends 

in a double-circle.

Anatomy of a DFA

0
0,1

00

1

1

1

q0

q1

q2

q3

states

states
the start

state

the start

state

accepting

states

transition rule:  the labeled arrows
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Computing with DFAs

the start

state

Let M be a DFA, using alphabet Σ.

We think of M as a computing mechanism,

which “accepts” some strings in Σ* and

“rejects” the others.        

Definition: L(M) = {x∈Σ* : M accepts x}

Called the “language decided/accepted by M”.

If P is a decision problem, 

we say M solves it if L(M) = P.

q0 q1

0 0

1

1

What language does this DFA decide?

All binary strings with an even number of 1’s.

q0 q1

0,1

0,1

What language does this DFA decide?

All binary strings with even length.

M is the following DFA, 

with alphabet Σ={a,b,c}:

L(M) = 

q0 q1

a,b,ca

c
q3

b,c
q2

a,b
a,b,c

{a, b, cb, cc} ⊆ {a,b,c}*

M:

L(M) = 

q0

0

1
q1

{x : x ends in a 0}

0

1

⋃ {ϵ}

Formal definition of DFAs

Let’s give a very formal definition of DFAs.

Having some notations can help us

reason about them.

Also illustrates that we can completely

formalize this notion of computation.
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Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

M = (Q, Σ, δ, q0, F)

where Q is a nonempty finite set of states,

Σ is an alphabet,

δ : Q × Σ → Q is the transition function,

q0 ∈ Q is the start state,

F ⊆ Q is the set of accepting states.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

M = (Q, Σ, δ, q0, F)

0
0,1

00

1

1

1

q0

q1

q2

q3

Q = {q0, q1, q2, q3}

Σ = {0,1}

q0 is the start state

F = {q1,q2}

δ we’ll come back to

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

M = (Q, Σ, δ, q0, F)

0
0,1

00

1

1

1

q0

q1

q2

q3

δ : Q × {0,1} → Q  is…

δ 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

Formal definition of DFAs

Let w = w1w2w3···wn, where each wi ∈ Σ.

We say that M accepts string w if:

There exist states r0, r1, r2, , …, rn ∈ Q

such that:

• r0 = q0, the initial state;

• δ(rt−1,wt) = rt for all t = 1, 2, 3, …, n;

• rn ∈ F (the accepting states).

Otherwise we say M rejects w.

The sequence r0, r1, r2, , …, rn is called the

computation trace.

DFA-construction practice:

G = {x∈{0,1}* : x contains the substring 110}

U = {110, 101}

S = {ϵ, 110, 110110, 110110110, 110110110110, …}

Uc = {0,1}* \ {110, 101}

P = {x∈{0,1}* : x starts and ends with same bit}

D = {x∈{0,1}* : |x| divisible by 2 or by 3}

C = {x∈{0,1}* : 10 and 01 occur equally often in x}

Regular Languages

Definition:

A language L ⊆ Σ* is regular if there is 

a DFA which decides it.

Questions:

1.  Are all languages regular?

2.  Are there other ways to tell if L is regular?
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Theorem:  L = {0n1n : n∈ℕ} is not regular

Notation:

If s∈Σ is a symbol and n∈ℕ then sn denotes

the string sss∙∙∙s (n times).

E.g., s3 means sss, s5 means sssss, 

s1 means s,   s0 means ϵ,          etc.

Thus L = {ϵ, 01, 0011, 000111, 00001111, …}.

Theorem:  L = {0n1n : n∈ℕ} is not regular

Intuition:

For a DFA to decide L, it seems like it needs

to “remember” how many 0’s it sees at the

beginning of the string, so that it can 

“check” there are equally many 1’s.  

But a DFA has only finitely many states —

shouldn’t be able to handle arbitrary n.

But we need to be careful: the following language is regular:

C = {x∈{0,1}* : 10 and 01 occur equally often in x}

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular
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Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Transitions?

Accept states?

Let’s keep it hazy.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

Um, we were

in this

state before.

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

DFA can’t tell the

difference between

starting 00 and starting 0000000

Input:       00000000000001111111111111

Theorem:  L = {0n1n : n∈ℕ} is not regular
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Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

DFA can’t tell the

difference between

starting 00 and starting 0000000

Input:       0000000
If the rest of the input is actually

1111111, the DFA better  accept

Theorem:  L = {0n1n : n∈ℕ} is not regular

Warmup: No DFA with, say, 7 states can decide L.

q0

q1

q3

q2

q6

q4

q5

DFA can’t tell the

difference between

starting 00 and starting 0000000

Input:       00
If the rest of the input is actually

1111111, the DFA better  accept

not

Theorem:  L = {0n1n : n∈ℕ} is not regular

Full proof:

Suppose for contradiction DFA M decides L using, say, k states.

Let ri denote the state M reaches after processing 0i.

By Pigeonhole, there is a repeat among r0, r1, r2, …, rk.

So say that rs = rt for some 0 ≤ s ≠ t ≤ k.

Since 0s1s ∈ L, starting from rs and processing 1s

causes M to reach an accepting state.

So on input 0t1s, M will process 0t, reach state rt = rs, 

process 1s, and therefore reach an accepting state.

But 0t1s∉L since s≠t, a contradiction.

Theorem:  L = {0n1n : n∈ℕ} is not regular Proving a language L is not regular

Most of the time, the proof looks like this:

1.  Assume for contradiction there is a DFA M

which decides language L.

2.  Argue (usually by Pigeonhole) there are 

two strings x and y which reach the same

state in M.

3.  Show there is a string z such that 

xz∈L but yz∉L.  Contradiction, since M

acts the same (accept/reject) on both.

Regular Languages

Definition:

A language L ⊆ Σ* is regular if there is 

a DFA which decides it.

Questions:

1.  Are all languages regular?

2.  Are there other ways to tell if L is regular?

Union Theorem

Definition:

Let L1 and L2 be any languages.

Their union, L1 ⋃ L2,  is {x : x ∈ L1 or x ∈ L2}.

Union Theorem:

If L1 and L2 are both regular languages 

over Σ then so is L1 ⋃ L2.
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Union Theorem

L1 =  strings with even

# of 1’s

E.g.:
M1

L2 =  strings with length

divisible by 3

p0 p1
0,1

0,1
p2

0,1
M2

qeven

qodd

0

0

1 1

Union Theorem

M1

qeven

qodd

0

0

1 1
Input:     101001

p0 p1
0,1

0,1
p2

0,1
M2

Union Theorem

M1

qeven

qodd

0

0

1 1
Input:     101001

p0 p1
0,1

0,1
p2

0,1
M2

Union Theorem

M1

qeven

qodd

0

0

1 1
Input:     101001

p0 p1
0,1

0,1
p2

0,1
M2

Union Theorem

M1

qeven

qodd

0

0

1 1
Input:     101001

p0 p1
0,1

0,1
p2

0,1
M2

Union Theorem

M1

qeven

qodd

0

0

1 1
Input:     101001

p0
0,1

0,1
p2

0,1
M2

p1
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Union Theorem

M1

qeven

qodd

0

0

1 1
Input:     101001

p0
0,1

0,1 0,1
M2

p2p1

Union Theorem

M1

0

0

1 1
Input:     101001

0,1

0,1 0,1
M2

p1 p2p0

qeven

qodd

Accept.

Union Theorem

M1

0

1 1

0,1

0,1 0,1
M2

p1 p2

qeven

Make a DFA keeping

track of both at once.

p0

qodd 0

Union Theorem

0

Make a DFA keeping

track of both at once.

qeven, p0 qeven, p1 qeven, p2

1

qodd, p0 qodd, p1 qodd, p2

0

0

0 0

1

11

Union Theorem

0
qeven, p0 qeven, p1 qeven, p2

1

qodd, p0 qodd, p1 qodd, p2

0

0

0 0

1

Input:     101001

11

Union Theorem

0
qeven, p0 qeven, p1 qeven, p2

1

qodd, p0 qodd, p1 qodd, p2

0

0

0 0

1

Input:     101001

11
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Union Theorem

0
qeven, p0 qeven, p1 qeven, p2

1

qodd, p0 qodd, p2

0

0

0 0

1

Input:     101001

qodd, p1

11

Union Theorem

0
qeven, p0 qeven, p1 qeven, p2

1

qodd, p0

0

0

0 0

1

Input:     101001

qodd, p1

11

qodd, p2

Union Theorem

0
qeven, p1 qeven, p2

1

qodd, p0

0

0

0 0

1

Input:     101001

qodd, p1

11

qodd, p2

qeven, p0

Union Theorem

0
qeven, p2

1

qodd, p0

0

0

0 0

1

Input:     101001

qodd, p1

11

qodd, p2

qeven, p0 qeven, p1

Union Theorem

0

1

qodd, p0

0

0

0 0

1

Input:     101001

qodd, p1

11

qodd, p2

qeven, p0 qeven, p1 qeven, p2

Accept.

0

Union Theorem

Formal proof:

Suppose L1 is decided by M1 = (Q, Σ, δ, q0, F).

Suppose L2 is decided by M2 = (Q/, Σ, δ/, q0
/, F/).

Define the DFA M = (Q×Q/, Σ, β, (q0,q0
/), G),

where G = {(q,q/) : q∈F or q/∈F/}

and β( (q,q/), c ) = ( δ(q,c), δ/(q/,c) ).

Then…(it’s not hard to see that)… L(M) = L1 ⋃ L2.
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More “closure” theorems

Theorem:   L1 ⋃ L2 is regular if L1, L2 are.

Theorem:   L1 ⋅ L2 is regular if L1, L2 are.

“Concatenation”: L1 ⋅ L2 = {xy : x∈L1, y∈L2}

Theorem:   L* is regular if L is.

“Star”: L* = { x1x2∙∙∙xk : k ≥ 0, each xi in L}

The Regular Operations

Theorem:   L1 ⋃ L2 is regular if L1, L2 are.

Theorem:   L1 ⋅ L2 is regular if L1, L2 are.

Theorem:   L* is regular if L is.

The latter two theorems are

somewhat more tricky to prove.

You will prove them on the homework!

A Deductive System for regular languages

Objects: Languages over alphabet Σ

Initial objects:  ∅,    {a} for each a∈Σ

Deduction rules:

From L1, L2, can deduce L1 ⋃ L2

From L1, L2, can deduce L1 ⋅ L2

From L, can deduce L*

From the previous slide, we know 

that any deducible language is regular. 

Fact:  Every regular language is deducible.

I.e., if ∃ a DFA deciding L, then you can deduce L.

Proving this fact is also a little tricky.

A Deductive System for regular languages

Objects: Languages over alphabet Σ

Initial objects:  ∅,    {a} for each a∈Σ

Deduction rules:

From L1, L2, can deduce L1 ⋃ L2

From L1, L2, can deduce L1 ⋅ L2

From L, can deduce L*

Regular Expressions

A regular expression over Σ (say, {a,b})

is something that looks like this:

a(a⋃b)*a ⋃ b(a⋃b)*b ⋃ a ⋃ b

It is a syntactic representation of the deduction

of a regular language in the Deductive System.

Also stands for the deduced language;

e.g., the regular expression above stands for

{x∈{a,b}* : x starts & ends with same char}.

Regular Expressions

Commonly used in string searching (e.g., grep).

You’ll also see some shorthands in practice:

| instead of  ⋃

R+ for RR*

ϵ for ∅*

Σ or . for the union of all single characters

Rn for RRR∙∙∙R   (n times)

R?       for (R|ϵ)

and more…
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String Searching

The simplest string searching problem:

Instance: Text T, length n.  Substring w, length k.

Solution: Yes/No:  Does w occur in T?

a1, a2, a3, a4, a5, …, an

Naive algorithm:

Running time:  about nk steps

T = 

String Searching

Instance: Text T, length n.  Substring w, length k.

Solution: Yes/No: Does w occur in T?

Automaton solution:

The language Σ* w Σ* is regular!

There is some DFA Mw which decides it.

Once you build Mw, feed in T:  

running time is about n steps!

Time to build Mw?

There’s a simple alg. running in ~ k3 steps.

String Searching

Knuth–Morris–Pratt ’77:  # steps ~ k

The language Σ* w Σ* is regular!

There is some DFA Mw which decides it.

Once you build Mw, feed in T:  

running time is about n steps!

Time to build Mw?

Instance: Text T, length n.  Substring w, length k.

Solution: Yes/No: Does w occur in T?

Automaton solution:

String Searching

Pittsburgh native,

CMU bachelor’s,

CMU professor.

Knuth–Morris–Pratt ’77:  # steps ~ k

Instance: Text T, length n.  Substring w, length k.

Solution: Yes/No: Does w occur in T?

Finite automata were first studied in the 1940’s

in the context of neurophysiology.

Finite automata — to the max

McCulloch & Pitts

’40s & ’50s:  further studied by

mathematicians, linguists, electrical engineers

Finite automata — to the max

1959:  DFAs codified & this lecture’s results

proved by Michael Rabin & Dana Scott

CMU prof.

emeritus
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Finite automata — to the max

Rabin & Scott also invented DFAs with certain

“magical superpowers”

which you’ll investigate on the homework.

Actually, they showed that adding these

superpowers does not increase the set of

languages accepted by DFAs.

For this they won the Turing Award.

Scott

Blum

Clarke

Feigenbaum

Floyd

Goldwasser

Newell

Perlis

Reddy

Sutherland

Valiant

Simon

Finite automata — to the max

A further generalization of DFAs:

“nondeterministic pushdown automata”.

These decide the “context-free languages”.

A further further generalization:

“linear bounded automata”.

These decide the “context-sensitive languages”.

Finite automata — to the max

A further further further generalization:

“Turing Machines”.

These decide the

“decidable languages”.

We discuss them in the next lecture!

Definitions:

Problems, instances,
strings, languages.

DFAs.

Regular operations.

Regular expressions.

Theorem/proof:

0n1n is not regular.

Union Theorem.

Practice:

Building/analyzing 
DFAs.

Study Guide


