15-251: Great Theoretical Ideas in Computer Science
Lecture 5

What is computation?
What is an algorithm?

Turing’s Legacy

How can we mathematically define them?

How does the definition affect which
computational problems are solvable?

Problem: A mapping of instances to solutions.
f . T = T Solvable with “algorithms” (?)
E.g.: MULTIPLICATION, SORTING
PRIMALITY
Decision Problem: The solution is Yes/No. i
E.g.: PRIMALITY

PALINDROME Regular Languages
L={0"1":n e N} (Solvable with DFAs) SATISFIABILITY

(recall that Languages = Decision Problems)
EVENLENGTH = {XEZ* : length(x) is even}

SATISFIABILITY
(instance: propositional formula S;
solution: is S satisfiable?)

Solving 0"1" with Python
Solvable with Python
Determines if string S is of form 0”n 1”n
PRIMALITY def Solution() g
on1n '

Regular Languages J :

(Solvable with DFAs) SATISFIABILITY - i] 1= '0' or S[j] != '1':
return False
i+ 1
3 =1

return True

Solving 0"1" with C

of form 0%n 1%n */

* NULL is end-of-string char *

Question:
Should we just define “algorithm” to mean
a function written in Python?

Before we answer this, a caveat:

Problem instances are strings of any length.
These instances are stored in ‘memory’.

So we have to assume unlimited memory.

Wouldn't be mathematically natural otherwise!

Question:
Should we just define “algorithm” to mean
a function written in Python?

(allowed access to unlimited memory)

Answer:
Actually, we’ll eventually argue
that this would be OK!

Solvable with Python

PRIMALITY
@mam

Regular Languages
(Solvable with DFAs) SATISFIABILITY

“640k ought to be
enough for anybod

DOCRIPEAL

!

Bill Gates, 1981

Downsides as a formal definition:

Why choose Python?
Why not C, or Java, or SML, or...?

Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

Downsides as a formal definition

Why choose Python?
Why not C, or Java, or SML, or...?

Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

Claim:
Solvable with Python = Solvable with C

Proof intuition:

Our shared experience with programming.

“Proof:"”

1. Solvable with Python < Solvable with C.

The standard Python interpreter is written in C.

. Solvable with C € Solvable with Python.
Well, it’s pretty clear you can write a
C interpreter in Python.

Interpreters

You can write a Python interpreter in C.

You can writea C interpreter in Python.
You can write a Python interpreter in Java.
You can write a Java interpreter in Python.
You can write a Python interpreter in SML.
You can write an SML interpreter in Python.
You can write a Python interpreter in Python!!

The last one is called a
“Universal Python Program”

Claim:
Solvable with Python = Solvable with C

PRIMALITY
Onln

SATISFIABILITY

Interpreters
A Python function is (representable by) a string.

A Python interpreter is an algorithm (written
in some programming language) that
takes two inputs: P, a Python function;

%, a string;
and step-by-step simulates P (x) .

Solvable with Python
= Solvable with C
= Solvable with Java
= Solvable with SML

What we want to define
/ to be “computable”.

PRIMALITY
on1n

Regular Languages
(Solvable with DFAs) SATISFIABILITY

Downsides as a formal definition:

Why choose Python?
Why not C, or Java, or SML, or...?

Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

Would be nice to have a totally minimal (“TM")
programming language such that:

a) it can simulate simple bytecode like COVM,
and hence also C, Python, Java, SML, etc.;

b) it's simple enough to reason about
completely mathematically rigorously.

Let’s try to invent one.

By the way:

TM actually stands for Turing Machines

Alan Turing invented them in a 1936 paper
he wrote while a PhD student.

Downsides as a formal definition:

Why choose Python?
Why not C, or Java, or SML, or...?

Extremely complicated to rigorously define.
E.qg., official 2011 ISO definition of C
requires a 701-page PDF file!

We could go down to bytecode.
Though still takes 14 pages to define COVM.

Inventing TM programming language

TM will be a ridiculously simple programming
language for manipulating strings.

Through examples, we’ll show TM is
more powerful than you might first expect.

Eventually, we’ll claim you can
simulate simple bytecode (e.g. COVM) in TM.

We don’t have the time to prove this rigorously.
We'll just appeal to your programming intuition.

Defining Turing Machines

As with DFAs, a Turing Machine M is like a piece of code.
Unlike DFAs, Turing Machines have access to memory:
abstracted as a two-way infinite “tape” of cells.

-2 -1 0 3 <— Tape cell position numbers

The input from =" is written starting at cell 0.

Defining Turing Machines

As with DFAs, a Turing Machine M is like a piece of code.
Unlike DFAs, Turing Machines have access to memory:
abstracted as a two-way infinite “tape” of cells.

-2 -1 0 3 <— Tape cell position numbers

The input from X" is written starting at cell 0.
All other cells contain U (blank).

Defining Turing Machines

As with DFAs, a Turing Machine M is like a piece of code.
Unlike DFAs, Turing Machines have access to memory:
abstracted as a two-way infinite “tape” of cells.

-2 -1 0 3 <— Tape cell position numbers

HHEH?MHEEHHEEHE

The input from X" is written starting at cell 0.

All other cells contain U (blank).

In general, cells contain symbols from a tape alphabet T,
which must contain %, LI, and may have other symbols.

There's a tape pointer (“head”), initially at position 0.

Defining Turing Machines

HHHH?MHEEHHEHHH

There's a tape pointer (“head”), initially at position 0.

TM could’ve been defined as sequence of n instructions

But instead they’re traditionally defined a little differently.

Defining Turing Machines

As with DFAs, a Turing Machine M is like a piece of code.
Unlike DFAs, Turing Machines have access to memory:
abstracted as a two-way infinite “tape” of cells.

-2 -1 0 3 <+— Tape cell position numbers

HEHHHMHEEHEHEHH

The input from " is written starting at cell 0.
All other cells contain U (blank).

Defining Turing Machines

HHHH?MHEEHEEEHH

There’s a tape pointer (“head”), initially at position 0.

TM could’ve been defined as sequence of n instructions
where the allowed instructions are...
* Move the head left
* Move the head right
* Write symbol a (for any a€rl)
« If head is reading symbol a, GOTO step j (for any ael, 1< j<n)
* Halt & accept
* Halt & reject

Defining Turing Machines

May as well move the head at each step.
(If you want to stay put, just do a Left then a Right.)

May as well write a symbol at each step.
(Can just rewrite the symbol the head is reading.)

May as well do a GOTO at each step.
(Can always just GOTO the next step if you want.)

Instead of IF checking for a particular symbol,
may as well do a CASE statement on all symbols.

Defining Turing Machines Defining Turing Machines

Suppose, e.g., tape alphabetis ' = {a, b, ¢, U}.
Since there’s a GOTO in each step,

they’re not really “ordered” like “steps”.
May as well call them “states”.

In TM definition, a machine (piece of code) could be
thought of as a sequence of steps S;, S,, ... Sy,
where each looks something like this:

S;3: Switch(symbol under the head)
. In each state, TM takes a different action

case a: write c, move Left,
: write b, move Right, depending on symbol the tape head is reading.

: write u, move Left,
: write u, move Left, y . L.
Quite similar to DFAs...

Also, one S; is “Halt & accept”, Indeed, we usually draw them...

another is “Halt & reject”.

OFFICIAL PICTURE of a Turing Machine

Input alphabet: ¥ = {a,b} Tape alphabet: I = {a,b,u}

a~Ll, R means “if reading a, write LU & move head Right” Input: aaba

. ?HBH l . ?HI!IEI !

Input: aaba Input: aaba

?EHI!II!II!II!II!I l ?EHI!II!II!II!I !

Input: aaba Input: aaba

Input: aaba

] ?HHHHHI!II!II!II!I l g ?HHHHHI!II!II!I !

Input: baaaaa Input: baaaaa

Input: baaaaa

Input: baaaaa

?EHHHHEHEEEEEEEI

Input: baaaaa

Input: baaaaa Decision: Reject

OFFICIAL DEFINITION of Turing Machines

A Turing Machine is a 7-tuple
M=(Q %T, 38, qo Qaccept qreject):

Q is a finite set of states,

Y is a finite input alphabet (with LI¢Y),

I is a finite tape alphabet (with Liel, X SN
6:Qxl - QxI'x{L,R} is transition function,
go € Q is the start state,

Jaccept € Q is the accept state,

qreject € Qisthe rejeCt state, qreject = qaccept-

J?HHHHHHEHHEHEHH

Input: baaaaa

Let’s call that Turing Machine M.
What does M do on input xe {a,b}" ?

If x has length at least 2,
and first two symbols same, M(x) accepts.

If x has length less than 2,
or first two symbols different, M(x) rejects.

(Side effects: Tape cells 0, 1 always end up LI.
Head ends up at position 0,
unless x=g, in which case position 1.)

We won'’t write a formal definition of
how computation proceeds,
but it's just what you expect.

One CRUCIAL difference compared to DFAs:

A Turing Machine might never halt.

Just the same as with “usual” algorithms!

Python example: x=1
while x != 0:

x=x+1

M, our example Turing Machine, halts on all inputs.

A Turing Machine with this property is called a
decider
We like deciders.

Decidable languages

Definition:

A language R € " is decidable (or computable)
if there is a decider Turing Machine M such that:

1. For all xeR, M(x) accepts.
2. For all x¢R, M(x) rejects.

In this case we write R = L(M).

NOTE: If M is not a decider, then let’s say that
M does not compute/decide anything.

Input alphabet: ¥ = {0,1} Tape alphabet: ' = {0,1,#,u}

(omitted information
defined arbitrarily)

This slight variant does not halt on input €.
If M(x) never halts, we say M(x) “loops”.

Here, M(g) loops. So M is not a decider.

The language {0"1" : neN} is not regular:

no DFA decides it.

Is it decidable?
l.e., is there a TM deciding it?

Yes! Let's see a decider TM M such that
L(M) = {0"1": neN}

Jujofofolofafola]a]uuluululu]

Input: 00001011

10

ul#jofofofifola]afuuulu]u]ul

Input: 00001011

ul#jofofofifola]afuu]ulu]u]ul

Input: 00001011

ul#jofofofifola]afuu]ulu]u]ul

Input: 00001011

ul#Jojofofafolafafuulufufu]u]

Input: 00001011

ul#Jojofofifola]afuuluulu]u]

Input: 00001011

Jul#fofolofafola]a]u]uluululu]

Input: 00001011

11

ul#jofofofifola]afuuufu]u]ul

Input: 00001011

ul#jofofofifola]afuu]ulu]u]ul

Input: 00001011

ul#jofofofifola]#]ulululu]u]ul

Input: 00001011

ul#Jojofofafolafafuulufulu]u]

Input: 00001011

ul#Jojofofifola]#|ululululu]u]

Input: 00001011

Jul#fofolofafola]#lulululululu]

Input: 00001011

12

ul#jofofofifola]#fulululuu]ul

Input: 00001011

ul#jofofofifola]#]ulululuu]ul

Input: 00001011

ul#jofofofifola]#lulululu]u]ul

Input: 00001011

ul#Jojofofafola]#fufulufulu]u]

Input: 00001011

ul#Jojofofifola]#fululululu]u]

Input: 00001011

Jul#f#folofafola]#lulululululu]

Input: 00001011

13

ul#]#fofofafola]#lululululu]ul

Input: 00001011

ul#]#fofofafola]#lulululululul

Input: 00001011

ul#]#fofofafola]#lulululuu]ul

Input: 00001011

ul#]#jofofafola]#fululufulu]u]

Input: 00001011

ul#]#jofofafola]#fululululu]u]

Input: 00001011

Jul#f#folofafola]#lulululululu]

Input: 00001011

14

ul#]#fofofafol#]#lulululululul

Input: 00001011

ul#]#fofofifol#]#lululululu]ul

Input: 00001011

ul#]#fofofafol#]#lulululu]u]ul

Input: 00001011

ul#]#jofofafol#]#lululululu]u]

Input: 00001011

ul#]#jofofafol#]#lulululululu]

Input: 00001011

Jul#f#folofafol#]#lulululululu]

Input: 00001011

15

ul#f#fefofafol#lalulululululul

Input: 00001011

ul#f#fefofafol#l#lulululu]u]ul

Input: 00001011

ul#l#fefofafol#l#lulululu]u]ul

Input: 00001011 Output: Reject

ul#l#l#lofafol#l#lululululu]u]

Input: 00001011

ul#l##lofafol#l#lululululu]u]

Input: 00001011

Programming with Turing
Machines is tiresome.

Every computer scientist should
spend some time doing it
at least once in their life.

Unfortunately for you,
that time is this month.

16

Some TM subroutines and tricks

. Move right (or left) until first LI encountered

. Shift entire input string one cell to the right

. Convert input from X;X;X3**X,, t0 LIX; LIX,LIX3L -+ LIX,
. Simulate a big I' by just {0,1,U} (or even just {1,U}!)

. “Mark” cells. If your tape alphabet is, say, {0,1,L},
extend it (or simulate extending it) to {0,1,0°,1°,1/}.
Treat 0°, 1° like O, 1, but use marks to “remember” cells.

. Copy a stretch of tape between two marked cells
into another marked section of tape.

Conclusion:

Any algorithm written in
Python, C, Java, SML, etc.
can be simulated
with a Turing Machine.

(In fact, even somewhat efficiently!)

Solvable with Python
= Solvable with C -
= Solvable with Java
= Solvable with SML

Solvable with TM
= “Decidable”

PRIMALITY
on1n

Regular Languages

(Solvable with DFAs) SATISFIABILITY

Some TM subroutines and tricks

7. Implement basic string & arithmetic operations

8. Simulate a TM with 2 tapes & read/write heads

9. Implement a dictionary (associative array) data structure
10. Simulate “random access memory”

11. ...

12. Simulate COVM, or some other simple bytecode.

Honest. It’s not too hard to show all this.
It just takes a little more time than we have.

Solvable with Python
= Solvable with C
= Solvable with Java
= Solvable with SML

What we want to define
/ to be “computable”.

PRIMALITY
on1n

Regular Languages

(Solvable with DFAs) SATISFIABILITY

In particular:
You can write a TM interpreter with a TM.

l.e., there’s a Universal Turing Machine U.
(There’s even one with fewer than a dozen states!)
This TM U takes as input a pair, (M,x)
where M is a Turing Machine (encoded in some
reasonable way

and x is a string... as a string)
... and U simulates M(x).

In other words U(M,x) accepts if M(x) accepts,
U(M,x) rejects if M(x) rejects,
U(M,x) loops if M(x) loops.

17

If you don’t believe me, you can consult
pp.14—17 of Alan Turing’s 1936 paper:

PS: at the time of writing, a “computer”
meant a person, trained in calculation.

Solvable with Python
= Solvable with C -
= Solvable with Java
= Solvable with SML

Solvable with TM
= “Decidable”

PRIMALITY
on1n

Regular Languages

(Solvable with DFAs) SATISFIABILITY

Question:
Is there a reasonable definition of
“algorithm” that can compute more

languages than the TM-decidable ones?

Answer 2: (from Turing’s 1936 paper)

Any notion of “computation” must be
able to be carried out by a “computer”
(i.e., a computing human!).

Turing justifies the TM by explaining
why it can do anything a human could.

Computers in the age of Turing

Question:
Is there a reasonable definition of
“algorithm” that can compute more
languages than the TM-decidable ones?

Answer 1: |[t's sort of hard to imagine.

Any new programming language would
be originally written in Python / C / etc.

Church-Turing Thesis:

“Any natural / reasonable notion of

computation can be simulated by a TM.”

This is not a theorem.

Is it... ...an observation?
...a definition?

...a hypothesis?

...a law of nature/physics?

...a philosophical statement?

Well, whatever. Essentially everyone believes it.

18

Solvable with TM = “Decidable”

= Solvable by any algorithm [assuming CTT]

PRIMALITY
onin

Regular Languages

) SATISFIABILITY

Definitions:

Study Guide

NS

Interpreters &

universal machines
Deciders, decidable langs.

Church-Turing Thesis

Practice:

Programming with TMs

Solvable with TM = “Decidable”

= Solvable by any algorithm [assuming CTT]

Question:
Is there any language which is
not decidable?

Answer:
Also investigated in Turing’s paper;
we’ll see the answer on Thursday!

Bonus Turing Machine example

Input alphabet: ~ = {d,e} Tape alphabet: ¥ = {d,e,l}

19

J?EHHHHEHEEEEEEHI

Input: deeded

JH?EHEHHEHHEHEHHI

Input: deeded

20

EH?HHHEHEEEEEEEI

Input: deeded

JHHE?EHHEHHEHEHHI

Input: deeded

21

EHHH?HEHEEEEEEEI

Input: deeded

JHHEHH?HEHHEHEHHI

Input: deeded

22

EHHHHH?HEEEEEEEI

Input: deeded

Input: deeded Output: Accept... with an interesting
side effect

JHHEHHEE?HHEHEHHI

Input: deeded

Eﬂﬂﬂﬂﬂﬂ?ﬂﬂﬂﬂﬂﬂﬂl

Input: deeded Output: Accept... with an interesting
side effect

Call this machine M.
On input xe {d,e}",
M(x) rejects if x=¢.
M(x) accepts if x=¢.
In particular, this M is a decider. L(M) = {x : x=€}.

(Side effect: input string shifted right one cell.)

23

