15-25I

 Great Theoretical Ideas in

 Great Theoretical Ideas in}

Computer Science

Uncountability and Uncomputability

January 29th, 2015

Our heros for this lecture

father of set theory

Uncountability
father of computer science

Uncomputability

Our heros for this lecture

father of set theory
father of computer science
Example 3: Set theory

Question:

How 'complete' are those 9 axioms? (ZFC)
Answer based on 100 years of experience: Amazingly complete!
Almost all true statements about math (GORM) can be deduced from them.

In particular, everything we will prove in 15-251!

Uncountability
Uncomputability

Infinity in mathematics

Pre-Cantor:

"Infinity is nothing more than a figure of speech which helps us talk about limits.
The notion of a completed infinity doesn't belong in mathematics"

- Carl Friedrich Gauss

Post-Cantor:
Infinite sets are mathematical objects just like finite sets.

Some of Cantor's contributions

> The study of infinite sets
> Explicit definition and use of I -to-I correspondence

- This is the right way to compare the cardinality of sets
> There are different levels of infinity.
-There are infinitely many infinities.
$>|\mathbb{N}|<|\mathbb{R}|$ even though they are both infinite.
$>|\mathbb{N}|=|\mathbb{Z}|$ even though $\mathbb{N} \subsetneq \mathbb{Z}$.
> The diagonal argument.

Reaction to Cantor's ideas

Most of the ideas of Cantorian set theory should be banished from mathematics once and for all!

- Henri Poincaré

Reaction to Cantor's ideas

I don't know what predominates in Cantor's theory philosophy or theology.

- Leopold Kronecker

Reaction to Cantor's ideas

Scientific charlatan.

- Leopold Kronecker

Reaction to Cantor's ideas

Corrupter of youth.

- Leopold Kronecker

Reaction to Cantor's ideas

Wrong.

- Ludwig Wittgenstein

Reaction to Cantor's ideas

Utter non-sense.

- Ludwig Wittgenstein

Reaction to Cantor's ideas

Laughable.

- Ludwig Wittgenstein

Reaction to Cantor's ideas

No one should expel us from the Paradise that Cantor has created.

- David Hilbert

Reaction to Cantor's ideas

> If one person can see it as a paradise, why should not another see it as a joke?

- Ludwig Wittgenstein

How do we count a finite set?

$A=\{$ apple, orange, banana, melon $\}$
What does $|A|=4$ mean?
There is a l-to-I correspondence between

$$
\begin{aligned}
& A \quad \text { and } \quad\{1,2,3,4\} \\
& \text { apple } \longleftrightarrow 4 \\
& \text { orange } \longleftrightarrow 4 \\
& \text { banana } \longleftrightarrow 4 \\
& \text { melon } \longleftrightarrow 4
\end{aligned}
$$

How do we count a finite set?

$A=\{$ apple, orange, banana, melon $\}$
$B=\{200,300,400,500\}$
What does $|A|=|B|$ mean?

How do we count a finite set?

$A=\{$ apple, orange, banana, melon $\}$
$B=\{200,300,400,500\}$
What does $|A|=|B|$ mean?

$|A|=|B| \quad$ iff there is a I -to- I correspondence between A and B.

3 important types of functions

injective, I-to-I
$f: A \rightarrow B$ is injective if $a \neq a^{\prime} \Longrightarrow f(a) \neq f\left(a^{\prime}\right)$
$A \hookrightarrow B$

surjective, onto

$f: A \rightarrow B$ is surjective if $\forall b \in B, \exists a \in A$ s.t. $f(a)=b$

$$
A \rightarrow B
$$

bijective, I-to-I correspondence
$f: A \rightarrow B$ is bijective if f is injective and surjective

Comparing the cardinality of finite sets

$$
\begin{aligned}
& |A| \leq|B| \\
& A \hookrightarrow B \\
& \overbrace{0}^{A} \\
& |A| \geq|B| \\
& A \rightarrow B \\
& |A|=|B|
\end{aligned}
$$

Sanity checks

$$
\begin{aligned}
|A| \leq|B| \text { iff }|B| & \geq|A| \\
& A \hookrightarrow B \text { iff } B \rightarrow A
\end{aligned}
$$

$$
|A|=|B| \text { iff }|A| \leq|B| \text { and }|A| \geq|B|
$$

$$
A \leftrightarrow B \text { iff } A \hookrightarrow B \text { and } A \rightarrow B
$$

$$
A \leftrightarrow B \text { iff } A \hookrightarrow B \text { and } B \hookrightarrow A
$$

If $|A| \leq|B|$ and $|B| \leq|C|$ then $|A| \leq|C|$
If $A \hookrightarrow B$ and $B \hookrightarrow C$ then $A \hookrightarrow C$

One more definition

$$
\begin{aligned}
|A| & <|B| \\
\text { not } \quad|A| & \geq|B|
\end{aligned}
$$

There is no surjection from A to B.

There is no injection from B to A.

There is an injection from A to B, but there is no bijection between A and B.

All is OK with infinite sets

$$
|A| \leq|B| \text { iff }|A| \leq|B|
$$

$$
A \hookrightarrow B \text { iff } B \rightarrow A
$$

$$
|A|=|B| \text { iff }|A| \leq|B| \text { and }|B| \leq|A|
$$

$A \leftrightarrow B$ iff $A \hookrightarrow B$ and $A \rightarrow B$
$A \leftrightarrow B$ iff $A \hookrightarrow B$ and $B \hookrightarrow A$

Cantor
Schröder
Bernstein

If $|A| \leq|B|$ and $|B| \leq|C|$ then $|A| \leq|C|$
If $A \hookrightarrow B$ and $B \hookrightarrow C$ then $A \hookrightarrow C$

Examples of equal size sets

$$
|\mathbb{N}|=|\mathbb{Z}|
$$

$$
\mathbb{N}=\{0,1,2,3,4, \ldots\}
$$

$$
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

$$
01 \quad 23 \quad 45 \quad 67 \quad 8 \ldots
$$

$$
\downarrow \downarrow(n)=(-1)^{n+1}\left\lceil\frac{n}{2}\right\rceil
$$

$$
0,1,-1,2,-2,3,-3,4,-4, \ldots
$$

List the integers so that eventually every number is reached.

Examples of equal size sets

$$
|\mathbb{N}|=|\mathbb{Z}|
$$

Does this make any sense? $\quad \mathbb{N} \subsetneq \mathbb{Z}$

$$
A \subsetneq B \Longrightarrow|A|<|B| ? \quad \text { Surely }|\mathbb{N}|<|\mathbb{Z}|
$$

Does renaming the elements of a set change its size?
Let's rename the elements of \mathbb{Z} :
$\{\ldots$, banana, apple, melon, orange, mango, ...\}
Let's call this set F. How can you justify $|\mathbb{N}|<|F|$?
Bijection is nothing more than renaming.

Examples of equal size sets

$$
|\mathbb{N}|=|S|
$$

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots\} \\
S & =\{0,1,4,9,16, \ldots\}
\end{aligned}
$$

$$
f(n)=n^{2}
$$

Examples of equal size sets

$$
|\mathbb{N}|=|P|
$$

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots\} \\
P & =\{2,3,5,7,11, \ldots\}
\end{aligned}
$$

$f(n)=n$ 'th prime number.

Countable sets

$$
|\mathbb{N}|=|A|
$$

if:
A is infinite,
and you can list the elements as $a_{0}, a_{1}, a_{2}, \ldots$
in a well-defined way.

$$
\left(a_{i} \neq a_{j} \text { for } i \neq j\right)
$$

Definition:

A is countably infinite if $|\mathbb{N}|=|A|$.
A is countable if A is finite or $|\mathbb{N}|=|A|$.

Countable sets

Definition:

A is countably infinite if $|\mathbb{N}|=|A|$.
A is countable if A is finite or $|\mathbb{N}|=|A|$.

What if A is infinite, but $|A|<|\mathbb{N}|$?
No such set exists!

So really A is countable if $|A| \leq|\mathbb{N}|$.

Countable?

Countable?

Between any two rational numbers, there is another one.
Can't just list them in the order they appear on the line.
Any rational number can be written as a fraction $\frac{a}{b}$.

$$
\begin{aligned}
& \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q} \quad\left(\operatorname{map}(a, b) \text { to } \frac{a}{b}\right) \\
& \quad \Longrightarrow|\mathbb{Q}| \leq|\mathbb{Z} \times \mathbb{Z}|=|\mathbb{N}|
\end{aligned}
$$

Clearly $|\mathbb{N}| \leq|\mathbb{Q}|$. So $|\mathbb{N}|=|\mathbb{Q}|$.

Countable?

$$
|\mathbb{N}|=\left|\{0,1\}^{*}\right| ?
$$

$\{0,1\}^{*}=$ the set of finite length binary strings.
ε
0
1
$00,01,10,11$
$000,001,010,011,100,101,110,111$
-••

Countable?

$$
|\mathbb{N}|=\left|\Sigma^{*}\right| ?
$$

$\Sigma^{*}=$ the set of finite length words over Σ.

Same idea.

CS method to show a set A is countable $(|A| \leq|\mathbb{N}|)$:
Show $\quad|A| \leq\left|\Sigma^{*}\right|$
i.e. $\quad \Sigma^{*} \rightarrow A$

CS method in action

Is $\mathbb{Q}[x]$ countable?
$\mathbb{Q}[x]=$ polynomials with rational coefficients.

Take $\Sigma=\left\{0,1, \ldots, 9, x,+,-, *, /{ }^{\wedge}\right\}$
Every polynomial can be described by a finite string over Σ.

$$
\text { e.g. } \quad x^{\wedge} 3-1 / 4 x^{\wedge} 2+6 x-22 / 7
$$

So $\Sigma^{*} \rightarrow \mathbb{Q}[x]$

Seems like every set is countable...

Cantor's Theorem

Theorem: For any non-empty set A,

$$
|A|<|\mathcal{P}(A)| .
$$

$$
S=\{1,2,3\}
$$

$$
\mathcal{P}(S)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}
$$

$$
|\mathcal{P}(S)|=2^{|S|}
$$

$\mathcal{P}(S) \leftrightarrow\{0,1\}^{|S|}$
binary strings of length $|S|$

$$
S=\{1,2,3\}
$$

$$
101 \longleftrightarrow\{1,3\}
$$

$$
000 \longleftrightarrow \emptyset
$$

Cantor's Theorem

Theorem: For any non-empty set A,

$$
|A|<|\mathcal{P}(A)| .
$$

So:

$$
\begin{aligned}
& |\mathbb{N}|<|\mathcal{P}(\mathbb{N})| . \\
& |\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))|<\cdots
\end{aligned}
$$

(an infinity of infinities)

Proof by diagonalization

Assume $|\mathcal{P}(A)| \leq|A|$ for some set A.
So $A \rightarrow \mathcal{P}(A)$. Let f be such a surjection.

Define $S=\{a \in A: a \notin f(a)\} \in \mathcal{P}(A)$.
Since f is onto, $\exists s \in A$ s.t. $f(s)=S$.
But this leads to a contradiction: Why is this called a if $s \notin S$ then $s \in S$ diagonalization argument? if $s \in S$ then $s \notin S$

Proof by diagonalization

	I	2	3	4	5	\cdots
$f(I)$	0	0	I	0	0	
$f(2)$	0	\square	0	0	1	

$\begin{array}{lllllll}f(3) & I & I & \square & 0 & 0 & \cdots \\ f(4) & I & I & I & 0 & 0 & \end{array}$
$f(5) \quad 0 \quad 0 \quad 0 \quad 1 \quad 1$
$f(s)=S \quad \mid \quad 0 \quad 0 \quad 1 \quad 0 \quad \cdots$

S is defined so that S cannot equal any $f(a)$

Uncountable sets

So $|\mathcal{P}(\mathbb{N})|>|\mathbb{N}|$.

Definition:

A set is A uncountable if it is not countable, i.e. $|A|>|\mathbb{N}|$.

Some examples: $\quad \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \ldots$

Uncountable sets

Let $\{0,1\}^{\infty}$ be the set of binary strings of infinite length.
$\{0,1,2,3,4,5,6,7,8,9, \ldots\}$
$0000000000 \ldots \quad \longleftrightarrow \emptyset$
|l|l|l|l||... $\longleftrightarrow \mathbb{N}$
IOIOIOIOIO $\ldots \longleftrightarrow$ \{even natural numbers $\}$
$\{0,1\}^{\infty}$ is uncountable, i.e. $\left|\{0,1\}^{\infty}\right|>|\mathbb{N}|$ because $\{0,1\}^{\infty} \leftrightarrow \mathcal{P}(\mathbb{N})$. (just like $\{0,1\}^{|S|} \leftrightarrow \mathcal{P}(S)$)
(Recall $\{0,1\}^{*}$ is countable.)

Uncountable sets

Let $\{0,1\}^{\infty}$ be the set of binary strings of infinite length. $\{0,1\}^{\infty}$ is uncountable, ie. $\left|\{0,1\}^{\infty}\right|>|\mathbb{N}|$ Direct diagonal proof: Suppose $\left|\{0,1\}^{\infty}\right| \leq|\mathbb{N}|$

$$
\mathbb{N} \rightarrow\{0,1\}^{\infty}
$$

I $00 \mid 0 \cdots \rightarrow$ cannot appear in the list

Uncountable sets

\mathbb{R} is uncountable. In fact $(0,1)$ is uncountable.
exercise

Appreciating the diagonalization argument

If you want to appreciate something, try to break it...

Exercise:

Why doesn't the diagonalization argument work for
$\mathbb{N}, \quad\{0,1\}^{*}, \quad$ a countable subset of $\{0,1\}^{\infty}$?

Before we end this section:

Is there a set S such that

$$
|\mathbb{N}|<|S|<|\mathcal{P}(\mathbb{N})| ?
$$

Continuum Hypothesis: No such set exists.
(Hilbert's Ist problem)

Applications to Computer Science

Most problems are uncomputable

Just count!

For any TM $M,\langle M\rangle \in \Sigma^{*}$
So $\{M: M$ is a TM$\}$ is countable.

How about the set of all computational problems?

$$
\left\{L: L \subseteq \Sigma^{*}\right\}=\mathcal{P}\left(\Sigma^{*}\right) \text { is uncountable. }
$$

Maybe all uncomputable problems are uninteresting ?

Working at Matrix Inc.

Debugging Trinity's code is taking too much time.

I think she keeps writing infinite loops.

Working at Matrix Inc.

Debugging Trinity's code is taking too much time.

I think she keeps writing infinite loops.

Halting Analyzer Program

How do you write such a program?

Dude, you might be the "One", but this is impossible!

An explicit uncomputable problem

Theorem: The halting problem is uncomputable.

Proof by Python:

Halting Problem

Inputs: A Python program file.
An input to the program.
Outputs: True if the program halts for the given input. False otherwise.

Halting problem is uncomputable

Assume such a program exists:
def halt(program, inputToProgram):
\# program and inputToProgram are both strings
\# Returns True if program halts when run with inputToProgram
\# as its input.
def turing(program):
if (halt(program, program)):
while True:
pass \# a pass statement does nothing
return None
What happens when you call turing(turing) ?
if halt(turing, turing) ----> turing doesn't terminate if not halt(turing, turing) ----> turing terminates

That was a diagonalization argument

def turing(program): if (halt(program, program)):
while True:
pass \# a pass statement does nothing return None

	$\left\langle f_{1}\right\rangle\left\langle f_{2}\right\rangle\left\langle f_{3}\right\rangle\left\langle f_{4}\right\rangle$	\cdots			
f_{1}	∞	∞	H	∞	
f_{2}	H	H	H	∞	
f_{3}	∞	∞	H	H	\cdots
f_{4}	∞	H	H	∞	
\vdots		\vdots			

turing $H \quad \infty \quad \infty \quad \ldots$

Halting problem is uncomputable

Proof by a theoretical computer scientist:

$$
\text { HALT }=\{\langle M, x\rangle: M \text { halts on input } x\}
$$

Suppose $M_{\text {HALT }}$ decides HALT.
Consider the following TM (let's call it $M_{\text {TURING }}$):
$M_{\text {TURING }}$
Treat the input as $\langle M\rangle$ for some TM M.
Run $M_{\text {HALT }}$ with input $\langle M, M\rangle$.
If it accepts, go into an infinite loop.
If it rejects, accept.

Halting problem is uncomputable

Proof by a theoretical computer scientist:

$$
\text { HALT }=\{\langle M, x\rangle: M \text { halts on input } x\}
$$

Suppose $M_{\text {Halt }}$ decides HALT.
Consider the following TM (let's call it $M_{\text {TURING }}$): $M_{\text {TURING }}$

Halting problem is uncomputable

$M_{\text {TURING }}$

What happens when $\left\langle M_{\text {TURING }}\right\rangle$ is input to $M_{\text {TURING }}$?

So what?

- No debugger program.
- Consider the following program: def fermat():
$\mathrm{t}=3$
while (True):
for n in xrange $(3, \mathrm{t}+1$):
for x in xrange $(1, \mathrm{t}+1)$:
for y in xrange $(1, \mathrm{t}+1)$:
 for z in xrange($1, \mathrm{t}+1$): if $\left(\mathrm{x}^{* *} \mathrm{n}+\mathrm{y}^{* *} \mathrm{n}=\mathrm{z}^{* *} \mathrm{n}\right)$: return $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{n})$ $\mathrm{t}+=1$

Question: Does this program halt?

So what?

- Reductions to other interesting problems
(show other interesting problems are as hard as the halting problem)

Entscheidungsproblem

Is there a finitary procedure to determine the validity of a given logical expression?
e.g. $\quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)$
(Mechanization of mathematics)

Hilbert's IOth Problem

Is there a program to determine if a given multivariate polynomial with integral coefficients has an integral solution?

So what?

Different laws of physics ----->

Different computational devices ----->

Every problem computable (?)

Can you come up with sensible laws of physics such that the Halting Problem becomes computable?

Let's show some other uncomputable problems.

Reduction

A central concept used to compare the "difficulty" of problems.
will differ based on context

Now we are interested in decidability vs undecidability (computability vs uncomputability)

Want to define: $A \leq B$
B is at least as hard as A (with respect to decidability).
i.e., B decidable $\Longrightarrow A$ decidable
A undecidable $\Longrightarrow \quad B$ undecidable

Reduction

Definition:

$A \leq_{T} B \quad(A$ reduces to $B):$
if it is possible to decide A using an algorithm for deciding B as a subroutine.

Reduction

If $A \leq_{T} B(A$ reduces to $B)$:

B decidable $\Longrightarrow A$ decidable A undecidable $\Longrightarrow B$ undecidable

Reduction

If HALT $\leq_{T} B$ (HALT reduces to $\left.B\right)$:

B is not decidable.

Example I: ACCEPTS

Theorem:

ACCEPTS $=\{\langle M, x\rangle: M$ is a TM that accepts $x\}$ is undecidable.
$\langle M, x\rangle$ is in the language

x leads to an accept state in M.
$\langle M, x\rangle$ is not in the language

x leads to a reject state, or M loops forever.
$\langle M, x\rangle \in$ HALT if x leads to an accept or reject state.

Example I: ACCEPTS

ACCEPTS $=\{\langle M, x\rangle: M$ is a TM that accepts $x\}$ Proof: (by picture)

$$
M_{\text {HALT }}
$$

Example I: ACCEPTS

ACCEPTS $=\{\langle M, x\rangle: M$ is a TM that accepts $x\}$ Proof:
We will show HALT \leq_{T} ACCEPTS .
Let $M_{\text {ACCEPts }}$ be a TM that decides ACCEPTS. Here is a TM that decides HALT:

On input $\langle M, x\rangle$, run $M_{\text {ACCEPTS }}(\langle M, x\rangle)$.
If it accepts, accept.
Reverse the accept and rejects states of M. Call it M^{\prime}.
Run $M_{\text {ACCEPTS }}\left(\left\langle M^{\prime}, x\right\rangle\right)$.
If it accepts (M rejects x), accept.
Reject.

Reductions are transitive

$$
\text { If } A \leq_{T} B \text { and } B \leq_{T} C \text {, then } A \leq_{T} C .
$$

(follows directly from the definition)

Example 2: EMPTY

Theorem:

EMPTY $=\{\langle M\rangle: M$ is a TM that accepts no strings $\}$ is undecidable.

Suffices to show ACCEPTS \leq_{T} EMPTY since we showed $\mathrm{HALT} \leq_{T}$ ACCEPTS.
exercise or recitation or homework

Example 3: REG

Theorem:
REG $=\{\langle M\rangle: M$ is a TM and $L(M)$ is regular $\}$ is undecidable.
exercise or recitation or homework

Interesting Observation

To show a negative result (that there is no algorithm)
we are showing a positive result (that there is a reduction)

Undecidable problems not involving Turing Machines

Entscheidungsproblem

Determining the validity of a given FOL sentence.

$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

330
[Now. 12,
os computable numbers, with ax application to THE ENTSCHEIDUNGSPROBLEM

Undecidable!

Proved in 1936 by Turing.

The "compatalit" sumbers may be deewied briefly as the real numbers nluas experstion es a secimal ane calcululte by flaite mesas.
 it in almoel equally cany to defore and inesatigate cempotelle fanstiven ef as integral vasalt or a menl or compatable variable, eomputalip perdectes, fir expliet treatnemt as involving the losit exmberss teeknikon. 1 hope shertly to give on anceuat of the relations of the epmpotalien namber, feretions, and on farth to eop anstiser. This will isclule a developenent of the thasy of fientions of a mal vatialde expereed in terme of eoserutaily mumbers. Acoeding to my defailion, a musiter is oompotable If its inecimal ean be written down ty a muchine.
In 44.161 give sosseaggemeats with the intentios of thowing that the compatable movien incloce oll mambers which oosid naturally te regusted as empatalit. It particalar, I theo that certain large clivese of numbers aee exempatalle. They isclade, fer instance, the mal parts of sill algetruie nsmbers, the mal pats of the seren of the Nenel fuevtions
 vheht is not conputath.

Aldiought the clas of cospputalle sumbers is as grat, and in many wars airiftar to the dhes of reat numbers, is is neverthelese tnameralle.

 reabled which are superfeisily sinilar to thoee of Godelt. These resilts

Hilbert's IOth Problem

Determining if a given multivariate polynomial with integral coefficients has an integer root.

$$
\text { e.g. } \quad 5 x y^{2} z+8 y z^{3}+100 x^{99}
$$

Undecidable!

Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root? Decidable!
Proved in 195I by Tarski.

Does it have a rational root?
No one knows!

Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.

bcc c

Output: Accept if it is possible to match the strings.

a	$b c c$	a	$b c c$
$a b$	c	$c a b c$	c

Undecidable!
Proved in 1946 by Post.

Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.

