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Infinity in mathematics

Pre-Cantor:

Post-Cantor:

“Infinity is nothing more than a figure of speech which    
helps us talk about limits. 
The notion of a completed infinity doesn't belong in 
mathematics”

- Carl Friedrich Gauss

Infinite sets are mathematical objects 
just like finite sets.



Some of Cantor’s contributions

>  The study of infinite sets

>  Explicit definition and use of 1-to-1 correspondence

- This is the right way to compare the cardinality of sets

>  There are different levels of infinity.

- There are infinitely many infinities.

>                  even though they are both infinite.|N| < |R|

>  The diagonal argument.

>                  even though             .|N| = |Z| N ( Z



Reaction to Cantor’s ideas

Most of the ideas of Cantorian set theory
should be banished from mathematics

once and for all!

- Henri Poincaré



Reaction to Cantor’s ideas

I don’t know what predominates 
in Cantor’s theory -

philosophy or theology.

- Leopold Kronecker



Reaction to Cantor’s ideas

Scientific charlatan.

- Leopold Kronecker



Reaction to Cantor’s ideas

Corrupter of youth.

- Leopold Kronecker



Reaction to Cantor’s ideas

Wrong.

- Ludwig Wittgenstein



Reaction to Cantor’s ideas

Utter non-sense.

- Ludwig Wittgenstein



Reaction to Cantor’s ideas

Laughable.

- Ludwig Wittgenstein



Reaction to Cantor’s ideas

No one should expel us from the Paradise
that Cantor has created.

- David Hilbert



Reaction to Cantor’s ideas

If one person can see it as a paradise,
why should not another see it as a joke?

- Ludwig Wittgenstein



What does               mean?

How do we count a finite set?

A = {apple, orange, banana, melon}

|A| = 4

There is a 1-to-1 correspondence between

A {1, 2, 3, 4}and

apple

orange

banana

melon

1

2

3

4



How do we count a finite set?

What does                  mean?

A = {apple, orange, banana, melon}
B = {200, 300, 400, 500}

|A| = |B|

apple

orange

banana

melon

1

2

3
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What does                  mean?

How do we count a finite set?

A = {apple, orange, banana, melon}

apple

orange

banana

melon

B = {200, 300, 400, 500}

|A| = |B|

200

300

400

500

|A| = |B| iff there is a 1-to-1 correspondence 
between      and      .A B



3 important types of functions
A B

A B

A B

injective,  1-to-1

surjective,  onto

bijective,  1-to-1 correspondence

a 6= a0 =) f(a) 6= f(a0)

f : A ! B is injective if A ,! B

A ⇣ B

A $ B

f : A ! B is surjective if

8b 2 B, 9a 2 A s.t. f(a) = b

f : A ! B is bijective if

f is injective and surjective



Comparing the cardinality of finite sets
A

A

A

B

B

B

A $ B

A ,! B

A ⇣ B

|A|  |B|

|A| = |B|

|A| � |B|



Sanity checks

If |A|  |B| and |B|  |C| then |A|  |C|

A $ B i↵ A ,! B and A ⇣ B

A ,! B i↵ B ⇣ A

A $ B i↵ A ,! B and B ,! A

If A ,! B and B ,! C then A ,! C

|A|  |B| i↵ |B| � |A|

|A| = |B| i↵ |A|  |B| and |A| � |B|



One more definition

|A| < |B|

There is an injection from A to B,
    but there is no bijection between A and B.

There is no injection from B to A.

There is no surjection from A to B.

|A| � |B|not



These are the right definitions
for infinite sets as well!



All is OK with infinite sets

|A| = |B| i↵ |A|  |B| and |B|  |A|

If |A|  |B| and |B|  |C| then |A|  |C|

|A|  |B| i↵ |A|  |B|

A ,! B i↵ B ⇣ A

If A ,! B and B ,! C then A ,! C

A $ B i↵ A ,! B and B ,! A

A $ B i↵ A ,! B and A ⇣ B Cantor
Schröder
Bernstein



Let me show you some
interesting consequences.



Examples of equal size sets

|N| = |Z|

N = {0, 1, 2, 3, 4, . . .}

Z = {. . . ,�4,�3,�2,�1, 0, 1, 2, 3, 4, . . .}

List the integers so that eventually every number is 
reached.

0, 1,�1, 2,�2, 3,�3, 4,�4, . . .

0 1 2 3 4 5 6 7 8 . . .

f(n) = (�1)n+1
ln
2

m



Examples of equal size sets

|N| = |Z|

Does this make any sense? N ( Z

A ( B =) |A| < |B|?

Does renaming the elements of a set change its size?

ZLet’s rename the elements of      :

{. . . , banana, apple, melon, orange, mango, . . .}

Let’s call this set    .   F How can you justify                 ?|N| < |F |

|N| < |Z|Surely               .

Bijection is nothing more than renaming.



Examples of equal size sets

N = {0, 1, 2, 3, 4, . . .}

f(n) = n2

|N| = |S|

S = {0, 1, 4, 9, 16, . . .}



Examples of equal size sets

N = {0, 1, 2, 3, 4, . . .}

P = {2, 3, 5, 7, 11, . . .}

|N| = |P |

f(n) = n’th prime number.



Countable sets

|N| = |A|

if:

A is infinite,

you can list the elements as a0, a1, a2, . . .

(ai 6= aj for i 6= j)
in a well-defined way.

and

Definition:

A is countably infinite if |N| = |A|.
A is countable if A is finite or |N| = |A|.



Countable sets

What if A is infinite, but |A| < |N|?

No such set exists!

So really A is countable if |A|  |N|.

Definition:

A is countably infinite if |N| = |A|.
A is countable if A is finite or |N| = |A|.



Countable?

|N| = |Z⇥ Z|?

(0, 0)
……

...

...

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(�1, 1)

(�1, 0)

(�1,�1)

(0,�1)

(1,�1)

(2,�1)

(2, 0)

(2, 1)

(2, 2)

(1, 2)

(0, 2)



Countable?

|N| = |Q|?

0 1 2 3 4-1-2-3-4

Between any two rational numbers, there is another one.

Can’t just list them in the order they appear on the line.

=) |Q|  |Z⇥ Z| = |N|

Clearly                 .   So                . |N|  |Q| |N| = |Q|

Any rational number can be written as a fraction      .
a

b
Z⇥ Z ⇣ Q ( map           to      ) (a, b)

a

b



Countable?

|N| = |{0, 1}⇤|?

{0, 1}⇤ = the set of finite length binary strings.

"

0

1

00, 01, 10, 11

000, 001, 010, 011, 100, 101, 110, 111

· · ·



Countable?

= the set of finite length words over      .

|N| = |⌃⇤|?

⌃⇤ ⌃

Same idea.

CS method to show a set      is countable                   :A (|A|  |N|)

i.e. 

Show |A|  |⌃⇤|

⌃⇤ ⇣ A



CS method in action

Q[x] = polynomials with rational coefficients.

Q[x]Is           countable?

⌃ = {0, 1, . . . , 9, x,+,�, ⇤, /,̂ }Take

Every polynomial can be described by a finite string
over    . ⌃

xˆ3� 1/4xˆ2 + 6x� 22/7e.g.

So ⌃⇤ ⇣ Q[x]



Seems like every set is countable…

Nope!
That would be boring!



Cantor’s Theorem

P(S) = {;, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

S = {1, 2, 3}

|P(S)| = 2|S|

P(S) $ {0, 1}|S| S = {1, 2, 3}
1 10  ! {1, 3}
0 0 0  ! ;binary strings of length |S| 

Theorem:

|A| < |P(A)|.

For any non-empty set A,



Cantor’s Theorem

So:

|N| < |P(N)|.

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·
(an infinity of infinities)

Theorem:

|A| < |P(A)|.

For any non-empty set A,



Example 1
2
3
4 ...

{3, 7, 9}
{2, 5}
{1, 2, 3}N ⇣ P(N)

Proof by diagonalization

Assume                        for some set      .|P(A)|  |A| A

So                   .      Let      be such a surjection. A ⇣ P(A) f

Define S = {a 2 A : a /2 f(a)} 2 P(A).

Since      is onto,                 s.t.                  .f 9s 2 A f(s) = S

But this leads to a contradiction:

if              then s 2 S s /2 S

if              then s 2 Ss /2 S

S = {1, 4, . . .}

Why is this called a
diagonalization argument?

s S



Proof by diagonalization

0 0 1 0 0
0 1 0 0 1
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1

…

...

1 2 3 4 5

f(1)
f(2)
f(3)
f(4)
f(5)

…

...
1 0 0 1 0 …

S is defined so that
S cannot equal any f(a)

Example 1
2
3
4 ...

{3, 7, 9}
{2, 5}
{1, 2, 3}N ⇣ P(N) S = {1, 4, . . .}

Sf(s)=



Uncountable sets

Some examples: P(N),P(P(N)), . . .

So |P(N)| > |N|.

i.e.                 .

Definition:

A set is      uncountable if it is not countable,

|A| > |N|
A



Uncountable sets

Let               be the set of binary strings of infinite length.{0, 1}1

0000000000 …
1111111111 …
1010101010 …

...

because                            .{0, 1}1 $ P(N)

{0,1,2,3,4,5,6,7,8,9, …   }

 ! {even natural numbers}

 ! ;
 ! N

(Recall            is countable.){0, 1}⇤

{0, 1}1 is uncountable,   i.e. |{0, 1}1| > |N|

(just like                           )                   {0, 1}|S| $ P(S)



Uncountable sets

Let               be the set of binary strings of infinite length.{0, 1}1

1 0 0 1 0 …

1
2
3
4
5

0 0 1 0 0
0 1 0 0 1
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1

…

...
...

…
…

…
…

—>  cannot appear in the list

Direct diagonal proof:    Suppose |{0, 1}1|  |N|
N ⇣ {0, 1}1

{0, 1}1 is uncountable,   i.e. |{0, 1}1| > |N|



Uncountable sets

R is uncountable. In fact           is uncountable.(0, 1)

exercise



Appreciating the diagonalization argument

If you want to appreciate something,
try to break it…

Exercise:
Why doesn’t the diagonalization argument work for

N {0, 1}⇤,                  ,      a countable subset of               ?{0, 1}1



Before we end this section:

Is there a set      such that 

|N| < |S| < |P(N)|?

S

Continuum Hypothesis:
No such set exists.

(Hilbert’s 1st problem)



Applications to Computer Science



Most problems are uncomputable

Just count!

For any TM      , M hMi 2 ⌃⇤

So                                is countable.{M : M is a TM}

How about the set of all computational problems?

{L : L ✓ ⌃⇤} = P(⌃⇤) is uncountable.



Maybe all uncomputable problems are uninteresting ?



Working at Matrix Inc.

Debugging Trinity’s code is 
taking too much time. 

I think she keeps writing 
infinite loops.

I’m the one.
I can fix anything.



Working at Matrix Inc.

Debugging Trinity’s code is 
taking too much time. 

I think she keeps writing 
infinite loops.

I’ll first write a program
that checks for infinite 

loops.



Halting Analyzer Program

How do you write such a program?

Dude, you might be the “One”, 
but this is impossible!



An explicit uncomputable problem

Halting
Program/Function

x

True
or

False

Theorem: The halting problem is uncomputable.

Proof by Python:

Inputs:  A Python program file.
            An input to the program.

Outputs:  True if the program halts for the given input.
               False otherwise.

Halting Problem



Halting problem is uncomputable
Assume such a program exists:

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
    # Returns True if program halts when run with inputToProgram
    # as its input.
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # a pass statement does nothing
    return None

What happens when you call  turing(turing) ?

if halt(turing, turing) ----> turing doesn’t terminate

if not halt(turing, turing) ----> turing terminates



That was a diagonalization argument
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # a pass statement does nothing
    return None

…

...

f1
f2

f3

f4

hf1ihf2ihf3ihf4i

…

...

1

1
1

1 1
1

1
1

H

H

H

HH

HH

H

turing 1 1H …H



Halting problem is uncomputable

HALT = {hM,xi : M halts on input x}

Consider the following TM (let’s call it                 ):MTURING

Run              with input              .MHALT

MTURING

Treat the input as         for some TM      .   hMi M

hM,Mi

If it accepts, go into an infinite loop.

If it rejects, accept.

Suppose              decides           .HALTMHALT

Proof by a theoretical computer scientist:



Halting problem is uncomputable

HALT = {hM,xi : M halts on input x}

Consider the following TM (let’s call it                 ):MTURING

Suppose              decides           .HALTMHALT

Proof by a theoretical computer scientist:

MHALT

MTURING

hMi
hM,Mi

accept
reject accept

1



Halting problem is uncomputable

What happens when                     is input to                 ?            hMTURINGi MTURING

MHALT

MTURING

hMi
hM,Mi

accept
reject accept

1



So what?

- No debugger program.

- Consider the following program:
def fermat():
    t = 3
    while (True):
        for n in xrange(3, t+1):
            for x in xrange(1, t+1):
                for y in xrange(1, t+1):
                    for z in xrange(1, t+1):
                        if (x**n + y**n == z**n): return (x, y, z, n)
        t += 1

Question: Does this program halt? 



So what?
- Reductions to other interesting problems
(show other interesting problems are as hard as the 
halting problem)

Is there a program to determine if a given multivariate 
polynomial with integral coefficients has an integral 
solution?

Hilbert’s 10th Problem

Entscheidungsproblem 
Is there a finitary procedure to determine the validity 
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.



So what?

Different laws of physics ----->

Different computational devices ----->

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?



Let’s show some other uncomputable problems.



Reduction

A central concept used to compare the “difficulty” of 
problems.

will differ based on context

Now we are interested in decidability vs undecidability
                                  (computability vs uncomputability) 

Want to define: A  B

     is at least as hard as     (with respect to decidability).AB

i.e.,         decidable                       decidable=)B A

              undecidable                   undecidable=) BA



x

A(x)

Reduction

A T B

Definition:

y B(y)

(      reduces to     ):A B

if it is possible to decide
using an algorithm for deciding       as a subroutine.

A
B



Reduction

A T B

y

x

B(y)

A(x)

(A reduces to B)If :

              decidable                       decidable=)B A

              undecidable                   undecidable=) BA



Reduction

y

x

B(y)

If :(HALT reduces to B)HALT T B

B is not decidable.

HALT(x)



Example 1:  ACCEPTS

Theorem:

is undecidable.

ACCEPTS = {hM,xi : M is a TM that accepts x}

           leads to a reject state,  or      loops forever.Mx

hM,xi           is not in the language =)

hM,xi 2 HALT                            if      leads to an accept or reject state.x

           is in the language         
M

x

hM,xi
 leads to an accept state in     .

=)



hM,xi

MHALT

Example 1:  ACCEPTS

Proof: (by picture)

MACCEPTShM,xi accept
reject

accept

MACCEPTShM 0
, xi accept

reject
accept
reject

reverse
accept & reject

states
hMi hM 0i

ACCEPTS = {hM,xi : M is a TM that accepts x}



Example 1:  ACCEPTS

Proof:
We will show                                     . HALT T ACCEPTS

Let                    be a TM that decides                   . MACCEPTS ACCEPTS

Here is a TM that decides            :HALT

If it accepts, accept.

On input            , run                                .hM,xi
MACCEPTS(hM,xi)

Reverse the accept and rejects states of     . Call it      . M M 0

Run                                 .MACCEPTS(hM 0
, xi)

If it accepts (      rejects    ),  accept.M x

Reject.

ACCEPTS = {hM,xi : M is a TM that accepts x}



Reductions are transitive

If A T B and B T C, then A T C.

(follows directly from the definition)



Example 2:  EMPTY

Theorem:

is undecidable.

exercise or recitation or homework

EMPTY = {hMi : M is a TM that accepts no strings}

Suffices to show                                       ACCEPTS T EMPTY

since we showed                                     .HALT T ACCEPTS



Example 3:  REG

Theorem:

is undecidable.

exercise or recitation or homework

REG = {hMi : M is a TM and L(M) is regular}



Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)



Undecidable problems not involving Turing Machines



Entscheidungsproblem

Determining the validity of a given FOL sentence.
¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Undecidable!

Proved in 1936 by Turing.



Hilbert’s 10th Problem

Determining if a given multivariate polynomial with 
integral coefficients has an integer root.

e.g.

Undecidable!

Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root? Decidable!

Does it have a rational root? No one knows!

Proved in 1951 by Tarski.

5xy2z + 8yz3 + 100x99



Post’s Correspondence Problem

Input:  A finite collection of  “dominoes”,
           having strings written on each half.

Output:  Accept if it is possible to match the strings.

abccabcc

abccabcc

Undecidable!
Proved in 1946 by Post.



Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.




