|5-251
Great Theoretical Ideas in

Computer Science

Uncountability and Uncomputability

January 29th, 2015

Our heros for this lecture

father of set theory father of computer science

3

1845-1918

Uncountability Uncomputability

Our heros for this lecture

father of set theory

Example 3: Set theory

Question:
How ‘complete’ are those 9 axioms?

VA ®)

Answer based on 100 years of experience:

Amazingly complete!
Almost all true statements about math
(GORM) can be deduced from them.

In particular, everything we will
prove in 15-251!

Uncountability

father of computer science

Uncomputability

Infinity in mathematics

Pre-Cantor:

“Infinity is nothing more than a figure of speech which
helps us talk about limits.

The notion of a completed infinity doesn't belong in
mathematics”

- Carl Friedrich Gauss

Post-Cantor:

Infinite sets are mathematical objects
just like finite sets.

Some of Cantor’s contributions

> The study of infinite sets

> Explicit definition and use of |-to-1 correspondence

- This is the right way to compare the cardinality of sets

> There are different levels of infinity.

- There are infinitely many infinities.
> |N| <|R| even though they are both infinite.
> |N| = |Z| eventhough NC Z.

> The diagonal argument.

Reaction to Cantor’s ideas

Most of the ideas of Cantorian set theory
should be banished from mathematics
once and for all!

- Henri Poincaré

Reaction to Cantor’s ideas

| don’t know what predominates
in Cantor’s theory -
philosophy or theology.

- Leopold Kronecker

Reaction to Cantor’s ideas

Scientific charlatan.

- Leopold Kronecker

Reaction to Cantor’s ideas

Corrupter of youth.

- Leopold Kronecker

Reaction to Cantor’s ideas

Wrong.

-

o

- Ludwig Wittgenstein

Reaction to Cantor’s ideas

Utter non-sense.

- Ludwig Wittgenstein

Reaction to Cantor’s ideas

Laughable.

-

b 4

- Ludwig Wittgenstein

Reaction to Cantor’s ideas

No one should expel us from the Paradise
that Cantor has created.

R

s

- David Hilbert a

Reaction to Cantor’s ideas

If one person can see it as a paradise,
why should not another see it as a joke?

Y

g,

- Ludwig Wittgenstein

How do we count a finite set!

A = {apple, orange, banana, melon}

What does |A| =4 mean?

There is a |-to-| correspondence between

A and {1,2,3,4}

apple < > 1
OTANgE > O
banana <« > 3

melon < > 4

How do we count a finite set!

A = {apple, orange, banana, melon}

B = {200, 300, 400, 500}
What does |A| = |B| mean?

apple < > | < » 500
Orange < >) < » 200
banana < >] < » 300

melon >] < » 400

How do we count a finite set!

A = {apple, orange, banana, melon}

B = {200, 300, 400, 500}
What does |A| = |B| mean?

apple < » 500
OTaNge > 200
banana < > 300
melon < » 400

|A| = |B| iff thereis a |-to-] correspondence
between A and B.

3 important types of functions

injective, |-to-l|

f: A — B is injective if

a#a = f(a)# f(d)

surjective, onto
f: A— B is surjective if

Vbe B,da € As.t. f(a) =0

bijective, |-to-l correspondence A B
f : A — B is bijective if

0 4

f is injective and surjective

Comparing the cardinality of finite sets

Al < B

Al > B

0 4

Al =B

Sanity checks

Al < |BJiff |B] = |A

A—->Bif B— A

Al = |BJ iff |A] < [B| and |A] > |B|

A BiTf A— Band A — B
A Bif A—w Band B— A

If |A| < |B| and |B| < |C| then |A| < |C

IfA— Band B<— (C then A — (C

One more definition

Al < | B

not |A| > |B]

There is no surjection from A to B.
There is no injection from B to A.

There is an injection from A to B,
but there is no bijection between A and B.

These are the right definitions
for infinite sets as well!

All is OK with infinite sets

Al < |BJiff |A] < [B

A—->Bif B— A

Al = |BJiff |[A] < [B| and |B| < |A

A Bif A~ Band A - B Cantor

A Bif A—w Band B— A Schroder
Bernstein

If |A| < |B| and |B| < |C| then |A| < |C
It A— B and B — C then A — C

Let me show you some
interesting consequences.

Examples of equal size sets
N| = |2

N=1{0,1,2,3.4,...)

Z=1{ . —4,-3-2-1,0,1,2,3,4,...}

01 23 45 67 8...
A A A A A A f(n) = (—1)"“[
0,1,-1,2, 2.3, 3.4, —4

))))))))y s

List the integers so that eventually every number is
reached.

Examples of equal size sets

N| = [Z]
Does this make any sense! N C Z

AC B = |A| < |B|? Surely [N| < |Z].

Does renaming the elements of a set change its size!
Let’s rename the elements of Z :

{...,banana, apple, melon, orange, mango, ...}
Let’s call this set . How can you justify |N| < [F|?

Bijection is nothing more than renaming.

Examples of equal size sets
Nl =[5

N=1{0,1,2,3,4,...}
S ={0,1,4,9,16,...)

f(n) = n’

Examples of equal size sets
N| = |P]

N=1{0,1,2,3,4,...}
P=1{23,5711,...}

f(n) = n’th prime number.

Countable sets

IN| = |A]
if:

A is infinite,

and you can list the elements as ag, a1, a9, ...

(a; # a; for i # j)

in a well-defined way.

[Definition:

_

A is countably infinite if [N| = |A].
A is countable if A is finite or |[N| = |A|.

~

Countable sets

(Definition:
A is countably infinite if [N| = |A].
A is countable if A is finite or |N| = | A|.

_

What if A is infinite, but |A| < |N|?

No such set exists!

So really A is countable if |A| < |N|.

Countable!?

N TN 7N N 7N TN N N N N N N N N YN

-~ -~ -~ -~ -~ -~

7, x 7.7

N|

Tlis2s
@0
. .
¢ o0&

Lo -~ -~ -~ -~

Countable?

N| = QJ?

Between any two rational numbers, there is another one.

Can’t just list them in the order they appear on the line.

: : : a
Any rational number can be written as a fraction 7

7Zx7 —Q (map (a,b) to %)
— [Q[< |Z x Z| =[N
Clearly |N| <|Q|. So |N|=|Q]|.

Countable?
IN| = |{0,1}7|7

{0,1}" = the set of finite length binary strings.

E

0

1

00,01, 10, 11

000,001, 010,011, 100,101,110, 111

Countable!?
IN| = X7
2" = the set of finite length words over .

Same idea.

CS method to show a set A is countable (|4| < |N|):
Show |A| < |X7
e. X' —= A

CS method in action

Is Q[x] countable?

Q[z] = polynomials with rational coefficients.

Take ¥ =1{0,1,...,9,2,+,—,*,/,}

Every polynomial can be described by a finite string
over ..

eg x 3—1/4x 2+ 6x —22/7

So ¥* —» Q[x]

Seems like every set is countable...

Nope!
That would be boring!

Cantor’s Theorem

(Theorem: For any non-empty set A,

Al < |P(A)|.
S Al < [P(A4)] y

S =1{1,2,3)
P(S) = {0, {1}, {2}, {3}, {1, 2}, {2,3}, {1, 31, {1,2,3}}
P(s)| = 218

P(S) {0, 1}1% §=1{1,2,3)
$ 101 +— {1,3}
binary strings of length |$] 000 <—10

Cantor’s Theorem

_

(Theorem: For any non-empty set A,

Al <|P(A)].

So:
N| < [P(N)].

N| < |P(N)] < [P(P(N))] < [P(P(P(N)))| < -

(an infinity of infinities)

Proof by diagonalization

Assume |P(A)| < |A| for someset A.
So A—P(A). Let f be such a surjection.

Example 1 o—{3,7,9}
20—+ {2,5}

N — P(N 3 1,2,3 S=1{1,4,...}
(N) 4:7{ i

S o——s S

Define S={acA:a¢ f(a)} € P(A).

Since f isonto, dse€ A s.t f(s)=2S5.

But this leads to a contradiction: Why is this called a

if s¢S then s€ 8§ diagonalization argument?
if s€S then s¢ S []

Proof by diagonalization

Example 1 e—» {3,7,9}
20— {2,5}

N — P(N 3 1,2,3 S={1,4,...}
(N) 47‘{ !

| 2 3 45

f(ly[[o]o 1 0 0

f2)| o [T]o o |

f3)[I 1[1]o o

f4)| 1 1 1[0]o

f5)| 0 0 0 I [I] . N
: : S is defined so that

' ' S cannot equal any f(a)
fs)=S 1 0 0O I O -- E /

Uncountable sets

So |P(N)| > |NJ.

(Definition:
A set is A uncountable if it is not countable,
i.e. |[Al > |N|.

_

Some examples: P(N),P(P(N)),...

Uncountable sets

Let {0,1}°° be the set of binary strings of infinite length.

{0,1,2,3,4,5,6,7,89, ... }
0000000000 ... <+«— 10

LEEErrrrrl ... «—N
1010101010 ... <— {even natural numbers}

{0,1}%° is uncountable, i.e. [{0,1}*| > |N|
because {0,1}° <> P(N). (just like {0,1}°l <+ P(9))
(Recall {0, 1}* is countable.)

Uncountable sets

Let {0,1}°° be the set of binary strings of infinite length.
{0,1}°° is uncountable, i.e. [{0,1}*°| > |N|
Direct diagonal proof: Suppose [{0,1}°| < |N|

N — {0, 1}

| 0 O I O :+ —> cannot appear in the list

Uncountable sets

R is uncountable. In fact (0, 1) is uncountable.

exercise

Appreciating the diagonalization argument

If you want to appreciate something,
try to break it...

Exercise:
Why doesn’t the diagonalization argument work for

N, {0,1}*, a countable subset of {0,1}° ?

Before we end this section:

Is there a set S such that

IN| <[S] <[P(N)?

Continuum Hypothesis:
No such set exists.

(Hilbert’s |st problem)

Applications to Computer Science

Most problems are uncomputable

Just count!

ForanyTM M, (M) e ¥" _—
So {M : M is aTM} is count ble.

How about the set of all computational problems?

{L:LCX¥"} =P(X*) isuncountable.

Maybe all uncomputable problems are uninteresting ?

Working at Matrix Inc.

4)
Debugging Trinity’s code is

taking too much time.

| think she keeps writing

infinite loops.
- J

I’'m the one.
| can fix anything.

Working at Matrix Inc.

4)
Debugging Trinity’s code is

taking too much time.

| think she keeps writing

infinite loops.
- J

I'll first write a program
that checks for infinite
loops.

Halting Analyzer Program

How do you write such a program?

Dude, you might be the “One”
but this is impossible!

A J

An explicit uncomputable problem

(Theorem: The halting problem is uncomputable.

)

Proof by Python:

Halting Problem
Inputs: A Python program file.

An input to the program.

False otherwise.

Outputs: True if the program halts for the given input.

1l

\ /

X

-

Halting
Program/Function

J

True
or

False

Halting problem is uncomputable

Assume such a program exists:

def halt(program, inputToProgram):
program and inputToProgram are both strings
Returns True if program halts when run with inputloProgram
as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # a pass statement does nothing
return None

What happens when you call turing(turing) ?
if halt(turing, turing) ----> turing doesn’t terminate

if not halt(turing, turing) ----> turing terminates []

That was a diagonalization argument

def turing(program):
if (halt(program, program)):
while True:

pass # a pass statement does nothing
return None

(f1) (f2) (f3) (fa) =+
fi o H oo
fo| H H oo
f3 | 0o o0 H

filoo H H [d

turing H oo oo H

Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = {(M,z) : M halts on input =}
Suppose Mia1 T decides HALT.
Consider the following TM (let’s call it Mtyring):

MTURING

Treat the input as (M) for someTM M .
Run Myarr with input (M, M).
If it accepts, go into an infinite loop.

If it rejects, accept.

Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = {(M,z) : M halts on input =}
Suppose Mia1 T decides HALT.

Consider the following TM (let’s call it Mtyring):

MTUuRrING

reject ——» accept

(M, M)— Mygavt
accept

Halting problem is uncomputable

MruriNG
(M. M)=| Myarr reject —» accept
(M) — accept
O

What happens when (Mrtyring) is input to MruriNGg?

So what!?

- No debugger program.

- Consider the following program:

def fermat():
t N 3 THE INTERNATIONAL BESTSELLER W)

for n in xrange(3, t+1):
for x in xrange(1, t+1):
for y in xrange(1, t+1):

t+=1

s

SIMON SINGH

for z in xrange(1, t+1):
| if (X**n + y**n == z**n): return (X, y, z, n)

Question: Does this program halt?

So what!?

- Reductions to other interesting problems
(show other interesting problems are as hard as the
halting problem)

Entscheidungsproblem

Is there a finitary procedure to determine the validity
of a given logical expression!?

e.g. —dx,y,z,n € N: (n>3) A (" +y" = 2")

(Mechanization of mathematics)

Hilbert’s 10th Problem

Is there a program to determine if a given multivariate
polynomial with integral coefficients has an integral
solution?

So what!?

Different laws of physics ----- >
Different computational devices ----- >

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?

Let’s show some other uncomputable problems.

Reduction

A central concept used to compare the “difficulty” of
problems. $

will differ based on context

Now we are interested in decidability vs undecidability
(computability vs uncomputability)

Want to define: A < B

B is at least as hard as A (with respect to decidability).

i.,e., B decidable — A decidable

A undecidable — B undecidable

Reduction

(Definition: h
A<r B (A reducesto B):
if it is possible to decide A
S using an algorithm for deciding B as a subroutine. y

Y —>

L —>

—> A(x)

Reduction

If A<t B (Areducesto B) :
B decidable — A decidable

A undecidable — B undecidable

y—> — B(y)

T —> —> A(x)

Reduction

If HALT <y B (HALT reduces to B) :

B 1s not decidable.

Y= — B(y)
T —> —> HALT(x)

Example |: ACCEPTS
4 h

Theorem:
ACCEPTS = {(M,x) : M is a TM that accepts x}

1s undecidable.

_ /

(M, x)is in the language —

x leads to an accept state in M.

(M, x)is not in the language —

x leads to a reject state, or M loops forever.

(M,z) € HALT if x leads to an accept or reject state.

(M, x)—>

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof: (by picture)

Mygarr

MaccerTS

accept
reject

reverse
accept & reject
states

MaccepTS >

accept

» accept

reject —

» accept
—> I'eject

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof:

We will show HALT < ACCEPTS.

Let MaccrpTs be aTM that decides ACCEPTS.
Here is a TM that decides HALT :

On input (M, x),run Macceprs((M, x)).
If it accepts, accept.

Reverse the accept and rejects states of M. Call it M.

Run Macceprs((M',).
If it accepts (M rejects x), accept.

Reject.

Reductions are transitive

If A<y Band B <y (C, then A <y C.

(follows directly from the definition)

Example 2: EMPTY

-

Theorem:

_

1s undecidable.

~

EMPTY = {(M) : M is a TM that accepts no strings}

/

Suffices to show ACCEPTS < EMPTY
since we showed HALT <, ACCEPTS.

exercise or recitation or homework

Example 3: REG

4)

Theorem:

REG = {(M) : M is a TM and L(M) is regular}

1s undecidable.

N—

exercise or recitation or homework

Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)

Undecidable problems not involving Turing Machines

Entscheidungsproblem

Determining the validity of a given FOL sentence.

e.g. —dz,y,z,n e N:(n>3)A

Undecidable!
Proved in 1936 by Turin

™wm A M Toms [Now. 12

ON CONPFUTABLE NUMBERS, WITH AN APFLICATION TO
THE ENTSCHEIDUNGSFROBLEM

By A N. Tusase

Fovarinl ™8 Mo " Banl 17 N wnidaw "
The compotable ' sumbers may b dosorited brefly as the mal
roambors whine exprostionn e & Seckmal are caliuladde by flnite mesne

Vihough e svalgset of thne the compatatde sumibery

it n almast aqually seay t

retatde ferntoiem

of an ntogral varedie or & rel or compatable variable, som

yptahde

The fandamensal pesbinms

the samis in ant, aned 1N o U

ML Crma bl ma i erdving the st combevnas

give s stcount of the relations of e

bo A developerrd

(ot to com another This will jex

of 1he thaory of Turttions of & roal vacisbie axpesssad in termm of com

Wis members Accsnding 10 my def

& ramber s 0ompats bie

o s decimad cam b written down by & machine

In 142,00 1 gve some argumeats with the mtontion of showing that the

compuiable numbers melede all numbers which conM »

anslly e

M computable. I partic r. 1 show that onrtain large classen

Y A0 0 g

able. They inchede, for itmtance, the soal parts of
sl algedeas nerbaey, e real parts of the peron of the Tamel funitions

the mambon », « o% The ¢ ble namden do not bo

ever, i lade
oll Cefinabie sumben, snd an esasple s pyen of & definable sumber

w hoeh i Dot computadle

Although the clam of

wlabde sumibers i o0 great, and in many
wars smilar 40 the claw

Ininle

o real numben t s severthelos enemerade

me cetlan argumests wiock voald seem 4o prove |
By (e coronit oy

wolrary

dation of e of thase argemmnie, ¢

I

reachad wiich are seporfoinly simdar 10 those of Godel . These resuits

dided, = Uler farvsnl wnmetmbvntase 300t 400 Pusiges Marhomeawe wnd o

wnsdow Spntome, 17, Mosanife Mok Foge. 38 (1950, 17510

Hilbert’s 10th Problem

Determining if a given multivariate polynomial with
integral coefficients has an integer root.

eg. bry’z+ 8yz° + 100z

Undecidable!

Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root! Decidable!
Proved in 1951 by Tarski.

Does it have a rational root!? No one knows!

Post’s Correspondence Problem

Input: A finite collection of “dominoes”,
having strings written on each half.

Output: Accept if it is possible to match the strings.

- abccabcc

- abccabcc

boe_
=l
Undecidable!

Proved in 1946 by Post.

Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.

