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Our heros for this lecture

father of set theory

Example 3: Set theory

Question:
How ‘complete’ are those 9 axioms?

VA ®)

Answer based on 100 years of experience:

Amazingly complete!
Almost all true statements about math
(GORM) can be deduced from them.

In particular, everything we will
prove in 15-251!

Uncountability

father of computer science

Uncomputability



Infinity in mathematics

Pre-Cantor:

“Infinity is nothing more than a figure of speech which
helps us talk about limits.

The notion of a completed infinity doesn't belong in
mathematics”

- Carl Friedrich Gauss

Post-Cantor:

Infinite sets are mathematical objects
just like finite sets.



Some of Cantor’s contributions

> The study of infinite sets

> Explicit definition and use of |-to-1 correspondence

- This is the right way to compare the cardinality of sets

> There are different levels of infinity.

- There are infinitely many infinities.
> |N| <|R| even though they are both infinite.
> |N| = |Z| eventhough NC Z.

> The diagonal argument.



Reaction to Cantor’s ideas

Most of the ideas of Cantorian set theory
should be banished from mathematics
once and for all!

- Henri Poincaré




Reaction to Cantor’s ideas

| don’t know what predominates
in Cantor’s theory -
philosophy or theology.

- Leopold Kronecker




Reaction to Cantor’s ideas

Scientific charlatan.

- Leopold Kronecker




Reaction to Cantor’s ideas

Corrupter of youth.

- Leopold Kronecker




Reaction to Cantor’s ideas

Wrong.

-

o

- Ludwig Wittgenstein



Reaction to Cantor’s ideas

Utter non-sense.

- Ludwig Wittgenstein




Reaction to Cantor’s ideas

Laughable.

-

b 4

- Ludwig Wittgenstein



Reaction to Cantor’s ideas

No one should expel us from the Paradise
that Cantor has created.

R

s

- David Hilbert a



Reaction to Cantor’s ideas

If one person can see it as a paradise,
why should not another see it as a joke?

Y

g,

- Ludwig Wittgenstein




How do we count a finite set!

A = {apple, orange, banana, melon}

What does |A| =4 mean?

There is a |-to-| correspondence between

A and {1,2,3,4}

apple < > 1
OTANgE > O
banana <« > 3

melon < > 4



How do we count a finite set!

A = {apple, orange, banana, melon}

B = {200, 300, 400, 500}
What does |A| = |B| mean?

apple < > | < » 500
Orange < > ) < » 200
banana < > ] < » 300

melon > ] < » 400




How do we count a finite set!

A = {apple, orange, banana, melon}

B = {200, 300, 400, 500}
What does |A| = |B| mean?

apple < » 500
OTaNge > 200
banana < > 300
melon < » 400

|A| = |B| iff thereis a |-to-] correspondence
between A and B.



3 important types of functions

injective, |-to-l|

f: A — B is injective if

a#a = f(a)# f(d)

surjective, onto
f: A— B is surjective if

Vbe B,da € As.t. f(a) =0

bijective, |-to-l correspondence A B
f : A — B is bijective if

0 4

f is injective and surjective



Comparing the cardinality of finite sets

Al < B

Al > B

0 4

Al =B




Sanity checks

Al < |BJiff |B] = |A

A—->Bif B— A

Al = |BJ iff |A] < [B| and |A] > |B|

A BiTf A— Band A — B
A Bif A—w Band B— A

If |A| < |B| and |B| < |C| then |A| < |C

IfA— Band B<— (C then A — (C




One more definition

Al < | B

not |A| > |B]

There is no surjection from A to B.
There is no injection from B to A.

There is an injection from A to B,
but there is no bijection between A and B.



These are the right definitions
for infinite sets as well!




All is OK with infinite sets

Al < |BJiff |A] < [B

A—->Bif B— A

Al = |BJiff |[A] < [B| and |B| < |A

A Bif A~ Band A - B Cantor

A Bif A—w Band B— A Schroder
Bernstein

If |A| < |B| and |B| < |C| then |A| < |C
It A— B and B — C then A — C




Let me show you some
interesting consequences.




Examples of equal size sets
N| = |2

N=1{0,1,2,3.4,...)

Z=1{ . —4,-3-2-1,0,1,2,3,4,...}

01 23 45 67 8...
A A A A A A f(n) = (—1)"“[
0,1,-1,2, 2.3, 3.4, —4

) ) ) ) ) ) ) )y s

List the integers so that eventually every number is
reached.



Examples of equal size sets

N| = [Z]
Does this make any sense! N C Z

AC B = |A| < |B|? Surely [N| < |Z].

Does renaming the elements of a set change its size!
Let’s rename the elements of Z :

{...,banana, apple, melon, orange, mango, ...}
Let’s call this set . How can you justify |N| < [F|?

Bijection is nothing more than renaming.



Examples of equal size sets
Nl =[5

N=1{0,1,2,3,4,...}
S ={0,1,4,9,16,...)

f(n) = n’



Examples of equal size sets
N| = |P]

N=1{0,1,2,3,4,...}
P=1{23,5711,...}

f(n) = n’th prime number.



Countable sets

IN| = |A]
if:

A is infinite,

and you can list the elements as ag, a1, a9, ...

(a; # a; for i # j)

in a well-defined way.

[Definition:

\_

A is countably infinite if [N| = |A].
A is countable if A is finite or |[N| = |A|.

~




Countable sets

( Definition:
A is countably infinite if [N| = |A].
A is countable if A is finite or |N| = | A|.

\_

What if A is infinite, but |A| < |N|?

No such set exists!

So really A is countable if |A| < |N|.



Countable!?

N TN 7N N 7N TN N N N N N N N N YN

-~ -~ -~ -~ -~ -~

7, x 7.7

N|

Tlis2s
@0
. .
¢ o0&

Lo -~ -~ -~ -~



Countable?

N| = QJ?

Between any two rational numbers, there is another one.

Can’t just list them in the order they appear on the line.

: : : a
Any rational number can be written as a fraction 7

7Zx7 —Q (map (a,b) to % )
— [Q[ < |Z x Z| =[N
Clearly |N| <|Q|. So |N|=|Q]|.



Countable?
IN| = |{0,1}7|7

{0,1}" = the set of finite length binary strings.

E

0

1

00,01, 10, 11

000,001, 010,011, 100,101,110, 111



Countable!?
IN| = X7
2" = the set of finite length words over .

Same idea.

CS method to show a set A is countable (|4| < |N|):
Show |A| < |X7
e. X' —= A



CS method in action

Is Q[x] countable?

Q[z] = polynomials with rational coefficients.

Take ¥ =1{0,1,...,9,2,+,—,*,/,}

Every polynomial can be described by a finite string
over ..

eg x 3—1/4x 2+ 6x —22/7

So ¥* —» Q[x]



Seems like every set is countable...

Nope!
That would be boring!




Cantor’s Theorem

( Theorem: For any non-empty set A,

Al < |P(A)|.
S Al < [P(A4)] y

S =1{1,2,3)
P(S) = {0, {1}, {2}, {3}, {1, 2}, {2,3}, {1, 31, {1,2,3}}
P(s)| = 218

P(S) {0, 1}1% §=1{1,2,3)
$ 101 +— {1,3}
binary strings of length |$] 000 <—10




Cantor’s Theorem

\_

( Theorem: For any non-empty set A,

Al <|P(A)].

So:
N| < [P(N)].

N| < |P(N)] < [P(P(N))] < [P(P(P(N)))| < -

(an infinity of infinities)




Proof by diagonalization

Assume |P(A)| < |A| for someset A.
So A—P(A). Let f be such a surjection.

Example 1 o—{3,7,9}
20—+ {2,5}

N — P(N 3 1,2,3 S=1{1,4,...}
(N) 4:7{ i

S o——s S

Define S={acA:a¢ f(a)} € P(A).

Since f isonto, dse€ A s.t f(s)=2S5.

But this leads to a contradiction: Why is this called a

if s¢S then s€ 8§ diagonalization argument?
if s€S then s¢ S []




Proof by diagonalization

Example 1 e—» {3,7,9}
20— {2,5}

N — P(N 3 1,2,3 S={1,4,...}
(N) 47‘{ !

| 2 3 45

f(ly[[o]o 1 0 0

f2)| o [T]o o |

f3)[ I 1[1]o o

f4)| 1 1 1[0]o

f5)| 0 0 0 I [I] . N
: : S is defined so that

' ' S cannot equal any f(a)
fs)=S 1 0 0O I O -- E /




Uncountable sets

So |P(N)| > |NJ.

(Definition:
A set is A uncountable if it is not countable,
i.e. |[Al > |N|.

\_

Some examples: P(N),P(P(N)),...



Uncountable sets

Let {0,1}°° be the set of binary strings of infinite length.

{0,1,2,3,4,5,6,7,89, ... }
0000000000 ... <+«— 10

LEEErrrrrl ... «—N
1010101010 ... <— {even natural numbers}

{0,1}%° is uncountable, i.e. [{0,1}*| > |N|
because {0,1}° <> P(N). (just like {0,1}°l <+ P(9))
(Recall {0, 1}* is countable.)



Uncountable sets

Let {0,1}°° be the set of binary strings of infinite length.
{0,1}°° is uncountable, i.e. [{0,1}*°| > |N|
Direct diagonal proof: Suppose [{0,1}°| < |N|

N — {0, 1}

| 0 O I O :+ —> cannot appear in the list



Uncountable sets

R is uncountable. In fact (0, 1) is uncountable.

exercise



Appreciating the diagonalization argument

If you want to appreciate something,
try to break it...

Exercise:
Why doesn’t the diagonalization argument work for

N, {0,1}*,  a countable subset of {0,1}° ?



Before we end this section:

Is there a set S such that

IN| <[S] <[P(N)?

Continuum Hypothesis:
No such set exists.

(Hilbert’s |st problem)



Applications to Computer Science



Most problems are uncomputable

Just count!

ForanyTM M, (M) e ¥" _—
So {M : M is aTM} is count ble.

How about the set of all computational problems?

{L:LCX¥"} =P(X*) isuncountable.



Maybe all uncomputable problems are uninteresting ?



Working at Matrix Inc.

4 )
Debugging Trinity’s code is

taking too much time.

| think she keeps writing

infinite loops.
- J

I’'m the one.
| can fix anything.




Working at Matrix Inc.

4 )
Debugging Trinity’s code is

taking too much time.

| think she keeps writing

infinite loops.
- J

I'll first write a program
that checks for infinite
loops.




Halting Analyzer Program

How do you write such a program?

Dude, you might be the “One”
but this is impossible!

A J




An explicit uncomputable problem

(Theorem: The halting problem is uncomputable.

)

Proof by Python:

Halting Problem
Inputs: A Python program file.

An input to the program.

False otherwise.

Outputs: True if the program halts for the given input.

1l

\ /

X

-

Halting
Program/Function

J

True
or

False



Halting problem is uncomputable

Assume such a program exists:

def halt(program, inputToProgram):
# program and inputToProgram are both strings
# Returns True if program halts when run with inputloProgram
# as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # a pass statement does nothing
return None

What happens when you call turing(turing) ?
if halt(turing, turing) ----> turing doesn’t terminate

if not halt(turing, turing) ----> turing terminates []



That was a diagonalization argument

def turing(program):
if (halt(program, program)):
while True:

pass # a pass statement does nothing
return None

(f1) (f2) (f3) (fa) =+
fi o H oo
fo| H H oo
f3 | 0o o0 H

filoo H H [d

turing H oo oo H



Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = {(M,z) : M halts on input =}
Suppose Mia1 T decides HALT.
Consider the following TM (let’s call it Mtyring ):

MTURING

Treat the input as (M) for someTM M .
Run Myarr with input (M, M).
If it accepts, go into an infinite loop.

If it rejects, accept.




Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = {(M,z) : M halts on input =}
Suppose Mia1 T decides HALT.

Consider the following TM (let’s call it Mtyring ):

MTUuRrING

reject ——» accept

(M, M)— Mygavt
accept




Halting problem is uncomputable

MruriNG
(M. M)=|  Myarr reject —» accept
(M) — accept
O

What happens when (Mrtyring) is input to MruriNGg?



So what!?

- No debugger program.

- Consider the following program:

def fermat():
t N 3 THE INTERNATIONAL BESTSELLER W)

for n in xrange(3, t+1):
for x in xrange(1, t+1):
for y in xrange(1, t+1):

t+=1

s

SIMON SINGH

for z in xrange(1, t+1):
| if (X**n + y**n == z**n): return (X, y, z, n)

Question: Does this program halt?



So what!?

- Reductions to other interesting problems
(show other interesting problems are as hard as the
halting problem)

Entscheidungsproblem

Is there a finitary procedure to determine the validity
of a given logical expression!?

e.g. —dx,y,z,n € N: (n>3) A (" +y" = 2")

(Mechanization of mathematics)

Hilbert’s 10th Problem

Is there a program to determine if a given multivariate
polynomial with integral coefficients has an integral
solution?



So what!?

Different laws of physics ----- >
Different computational devices ----- >

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?



Let’s show some other uncomputable problems.



Reduction

A central concept used to compare the “difficulty” of
problems. $

will differ based on context

Now we are interested in decidability vs undecidability
(computability vs uncomputability)

Want to define: A < B

B is at least as hard as A (with respect to decidability).

i.,e., B decidable — A decidable

A undecidable — B undecidable



Reduction

(Definition: h
A<r B ( A reducesto B):
if it is possible to decide A
S using an algorithm for deciding B as a subroutine. y

Y —>

L —>

—> A(x)




Reduction

If A<t B (Areducesto B) :
B decidable — A decidable

A undecidable — B undecidable

y—> — B(y)

T —> —> A(x)




Reduction

If HALT <y B (HALT reduces to B) :

B 1s not decidable.

Y= — B(y)
T —> —> HALT(x)




Example |: ACCEPTS
4 h

Theorem:
ACCEPTS = {(M,x) : M is a TM that accepts x}

1s undecidable.

\_ /

(M, x)is in the language —

x leads to an accept state in M.

(M, x)is not in the language —

x leads to a reject state, or M loops forever.

(M,z) € HALT if x leads to an accept or reject state.



(M, x)—>

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof: (by picture)

Mygarr

MaccerTS

accept
reject

reverse
accept & reject
states

MaccepTS >

accept

» accept

reject —

» accept
—> I'eject




Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof:

We will show HALT < ACCEPTS.

Let MaccrpTs be aTM that decides ACCEPTS.
Here is a TM that decides HALT :

On input (M, x),run Macceprs((M, x)).
If it accepts, accept.

Reverse the accept and rejects states of M. Call it M.

Run Macceprs((M', ).
If it accepts ( M rejects x ), accept.

Reject.




Reductions are transitive

If A<y Band B <y (C, then A <y C.

(follows directly from the definition)



Example 2: EMPTY

-

Theorem:

\_

1s undecidable.

~

EMPTY = {(M) : M is a TM that accepts no strings}

/

Suffices to show ACCEPTS < EMPTY
since we showed HALT <, ACCEPTS.

exercise or recitation or homework



Example 3: REG

4 )

Theorem:

REG = {(M) : M is a TM and L(M) is regular}

1s undecidable.

N—

exercise or recitation or homework



Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)



Undecidable problems not involving Turing Machines



Entscheidungsproblem

Determining the validity of a given FOL sentence.

e.g. —dz,y,z,n e N:(n>3)A

Undecidable!
Proved in 1936 by Turin

™wm A M Toms [Now. 12

ON CONPFUTABLE NUMBERS, WITH AN APFLICATION TO
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By A N. Tusase

Fovarinl ™8 Mo " Banl 17 N wnidaw "
The compotable ' sumbers may b dosorited brefly as the mal
roambors whine exprostionn e & Seckmal are caliuladde by flnite mesne

Vihough e svalgset of thne the compatatde sumibery

it n almast aqually seay t

retatde ferntoiem

of an ntogral varedie or & rel or compatable variable, som

yptahde

The fandamensal pesbinms

the samis in ant, aned 1N o U

ML Crma bl ma i erdving the st combevnas

give s stcount of the relations of e

bo A developerrd

(ot to com another This will jex

of 1he thaory of Turttions of & roal vacisbie axpesssad in termm of com

Wis members  Accsnding 10 my def

& ramber s 0ompats bie

o s decimad cam b written down by & machine

In 142,00 1 gve some argumeats with the mtontion of showing that the

compuiable numbers melede all numbers which conM »

anslly e

M computable. I partic r. 1 show that onrtain large classen

Y A0 0 g

able.  They inchede, for itmtance, the soal parts of
sl algedeas nerbaey, e real parts of the peron of the Tamel funitions

the mambon », « o% The ¢ ble namden do not bo

ever, i lade
oll Cefinabie sumben, snd an esasple s pyen of & definable sumber

w hoeh i Dot computadle

Although the clam of

wlabde sumibers i o0 great, and in many
wars smilar 40 the claw

Ininle

o real numben t s severthelos enemerade

me cetlan argumests wiock voald seem 4o prove |
By (e coronit oy

wolrary

dation of e of thase argemmnie, ¢

I

reachad wiich are seporfoinly simdar 10 those of Godel . These resuits

dided, = Uler farvsnl wnmetmbvntase 300t 400 Pusiges Marhomeawe wnd o

wnsdow Spntome, 17, Mosanife Mok Foge. 38 (1950, 17510




Hilbert’s 10th Problem

Determining if a given multivariate polynomial with
integral coefficients has an integer root.

eg. bry’z+ 8yz° + 100z

Undecidable!

Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root! Decidable!
Proved in 1951 by Tarski.

Does it have a rational root!? No one knows!



Post’s Correspondence Problem

Input: A finite collection of “dominoes”,
having strings written on each half.

Output: Accept if it is possible to match the strings.

- abccabcc

- abccabcc

boe_
=l
Undecidable!

Proved in 1946 by Post.




Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.






