# |5-25| <br> <br> Great Theoretical Ideas in 

 <br> <br> Great Theoretical Ideas in}

## Computer Science

## Introduction to Computational Complexity I

February 3rd, 2015

## Reminder

## Midterm I

## February IIth, I8:30-2I:30

Covers Lectures I-6 (first 3 homeworks)

## What have we done so far?

> Introduction to the course
Computer science is no more about computers than astronomy is about telescopes.
> Logic
Foundation of mathematics
> Formalization of computation/algorithm
Deterministic Finite Automata
Turing Machines
> The study of computation
Computability

## What have we done so far?

> The study of computation
Computability

- Most problems are undecidable.
- Some very interesting problems undecidable.

But most interesting problems are decidable!

## What is next?

> The study of computation
Computability
Computational Complexity (Practical Computability)

- How do we define complexity?
- What is the right level of abstraction to use?
- How do we analyze complexity?
-What are some interesting problems to study?
- What can we do to better understand the complexity of problems?


## What is next?

## ABOUT

PROGRAMS
MILIENNIUMFROALEMS
PEOPLE
PUBLICATICNS
EUCLID
EVENTS

## Millennium Problems

Yang-Mills and Mass Gap
Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang. Mills equations. But no proof of this property is known.

Riemann Hypothesis

## I million dollar question

The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average.
Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' aeros of the zeta function are complex numbers with real part $1 / 2$.

## Pvs NP Problem

## (or maybe 6 million dollar question)

Tifis casy vo onco thata solvion lo a problem is correct, is it also easy to solve the problem? This is the essence of the Pvs NP question. Typical of the NP problems is that of the Hamiltonlan Path Problemc given $N$ cities to visit, how can one do this without visiting a city twice? If you glve me a solution, I can easily check that it is correct. But I cannot so easily find a solution.

## Navier-Stokes Equation

P = NP ?!?

This is the equation which governs the flow of fluids such as water and air. However, there is no proof for the most basic questions one can ask do solutions exist, and are they unique? Why ask for a prool? Because a proof gives not only certitude, but also understanding.

## Hodge Conjecture

The answer to this conjecture determines how much of the topology of the solution set of a system of algebraic equations can be defined in terms of

further algebraic equations. The Hodge conjecture is known in certain special cases, eg, when the solution set has dimension less than four, But in dimension four it is unknown.

## Poincaré Conjecture

In 1904 the French mathematician Henri Poincare asked if the three dimensional sphere is characteriaed as the unique simply connected three manifold. This question, the Poincare conjecture, was a special case of Thurstori's geometrization conjecture. Perelman's proof tells us that every three manifold is built from a set of standard pieces, each with one of eight well-understood geometries.

## Birch and Swinnerton-Dyer Conjecture

Supported by much experimental evidence, this corjecture relates the number of points on an elliptic curve mod $p$ to the rank of the group of rational points. Elliptic curves, defined by cubic equations in two variables, are fundamental mathematical objects that arise in many areas: Wiles' proof of the Fermat Conjecture, factorization of numbers into primes, and cryptography, to name three.

## Introduction to Computational Complexity

Computational complexity of an algorithm.

Computational complexity of a problem.

- complexity of the best algorithm computing the problem.

Complexity with respect to what?

- time (number of steps)

Our focus
for now

- space (memory)
- randomness
- quantum resources


## Introduction to Computational Complexity

Church-Turing Thesis:
With respect to computability
the particular computational model doesn't matter.

Unfortunately, this is not true with respect to computational complexity.

The model makes a difference.

How the model can affect running time

## A multitape Turing machine

Ordinary TM with multiple tapes, each with its own head.


Multiple Tape/Head Turing Machines
Number of tapes is fixed (cannot grow with input size).

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}
$$

e.g. $\left(q_{i}, a_{1}, \ldots, a_{k}\right) \mapsto\left(q_{j}, b_{1}, \ldots, b_{k}, R, L, \cdots, L\right)$

## A multitape Turing machine

Ordinary TM with multiple tapes, each with its own head.


Multiple Tape/Head Turing Machines
Is it more powerful?
Every multitape TM has an equivalent single tape TM.

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

On input string w:

- Scan the input and reject if a 0 is found to the right of a $I$.
- Repeat while both 0 s and Is remain on the tape:
- Scan the tape, cross off a single 0 and a single I.
- If 0 s remain but no Is remain or Is remain but no 0 s remain reject
- Else accept

Number of steps: $O\left(n^{2}\right) \quad$ ( $n$ is the input length.)

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a two-tape TM take?
On input string w:

- Scan the input and reject if a 0 is found to the right of a $I$.
- Scan the 0 s until the first I, and copy the Os to Tape 2.
- Scan the Is. For each I read, cross off a 0 on Tape 2.
- If all 0 s are crossed off before all Is are read, reject.
- If all $0 s$ are crossed off accept.
- Else reject (some 0s remain).

Number of steps: $O(n)$

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?
On input string w:

- Scan the input and reject if a 0 is found to the right of a 1 .
- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?


- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?


- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of Os) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?


- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\ldots$| - | $\#$ | 0 | 0 | 0 | 0 | 0 | 0 | I | I | I | I | I | I | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of Os) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\ldots$| - | $\#$ | 0 | $\#$ | 0 | 0 | 0 | 0 | I | I | I | I | I | I | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of Os) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | 0 | 0 | 0 | I | I | I | I | I | I | I | $\sqcup$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\ldots$| - | $\#$ | 0 | $\#$ | 0 | 0 | 0 | 0 | I | I | I | I | I | I | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | 0 | I | I | I | I | I | I | I | $\square$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?


- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | 0 | I | I | I | I | I | I | I | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | I | I | I | I | I | I | I | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | I | I | I | I | I | I | I | $\square$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | I | I | I | I | I | $\square$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | I | I | I | I | I | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | I | I | I | I | I | $\square$ | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | I | I | I | $\square$ | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | I | I | I | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | I | I | I | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | I | $\sqcup$ | .. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | I | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | I | $\sqcup$ | .. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\cdots$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of Os) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | 0 | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\cdots$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | 0 | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I | $\#$ | I |  |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0 . Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?


- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | I |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | $\#$ |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | 1 | $\#$ | $\#$ |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$| - | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | I | $\#$ | $\#$ | $\#$ | $\sqcup$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Repeat while both 0 s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of 0 s ) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

How many steps does a single-tape TM take?

$\cdots$|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\#$ | $\#$ | $\#$ | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | 1 | $\#$ | $\#$ |

- Repeat while both 0s and Is remain on the tape:
- Scan the tape. If (\# of Is + \# of Os) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
- If no 0 s and no Is remain accept.
- Else reject.

Number of steps: $O(n \log n)$

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

Why is it correct?

- Scan the tape. If (\# of Is + \# of 0s) is odd, reject.
- Scan the tape. Cross off every other 0 starting with first 0. Cross off every other I starting with first I.
(\# of $1 s+\#$ of $0 s$ ) is odd if and only if
(\# of Is) and (\# of Os) have different parities.
Sequence of parities of (\# of Is) —> binary representation of (\# of Is) in the input
Sequence of parities of (\# of 0 s ) $->$ binary representation of (\# of 0s) in the input


## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

Can we do better?
$O(n \log n)$ is the best for I-tape TMs.
$O(n) \quad$ is the best for 2-tape TMs.

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

A function in Python: \# of steps
def twoFingers(s):
lo $=0 \quad \ldots \ldots \ldots$
hi $=\operatorname{len}(\mathrm{s})-1 \cdots$
while ( $\mathrm{lo}<\mathrm{hi}):$

|  |  |
| :---: | :---: |
|  |  |

lo $+=1$
hi $-=1$
return True
Seems like

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

$$
\text { hi }-=1
$$

Initially hi $=\mathrm{n}$-I (the length of the input -I )
How many bits to store hi ? $\sim \log _{2} n$
What if $n$ is a power of 2 ?

$$
-\left\lvert\,<\begin{aligned}
& \text { hi }=100000 \ldots 0 \\
& \longrightarrow \text { hi }=0| || | l \ldots \mid \quad \sim \log _{2} n \text { steps }
\end{aligned}\right.
$$

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

A function in Python:
\# of steps
def twoFingers(s):

| $\mathrm{lo}=0$ | ... \| |
| :---: | :---: |
| hi $=\operatorname{len}(\mathrm{s})-1$ | I |
| while ( lo < hi): | ... |
| if ( $s[l o]!=0$ or $s[h i]!=1$ ) return False | $\begin{array}{ll} \cdots & 3 ? \\ \cdots & 4 ? \\ \cdots \end{array}$ |
| $\mathrm{lo}+=1$ | ... \| |
| hi $-=1$ | $\log \mathrm{n}$ ? |

return True

## How the model can affect time

$$
\begin{gathered}
L=\left\{0^{k} 1^{k}: k \geq 0\right\} \\
\text { if }(\mathrm{s}[\mathrm{lo}]!=0 \text { or } \mathrm{s}[\mathrm{hi}]!=1):
\end{gathered}
$$

Initially lo $=0, \mathrm{hi}=\mathrm{n}-\mathrm{I}$
Does it take n steps to go from $\mathrm{s}[0]$ to $\mathrm{s}[\mathrm{n}-\mathrm{I}]$ ?

## How the model can affect time

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

A function in Python: \# of steps
def twoFingers(s):

| $\mathrm{lo}=0$ | I |
| :---: | :---: |
| $\mathrm{hi}=\operatorname{len}(\mathrm{s})-1 \cdots$ | I |
| while (lo < hi): | . 1 |
| $\begin{aligned} & \text { if }(\mathrm{s}[\mathrm{lo}]!=0 \text { or } \mathrm{s}[\mathrm{hi}]!=1) \text { : } \\ & \text { return False } \ldots \ldots \ldots . \end{aligned}$ | $\mid \cdots n!?$ |
| lo += 1 | ... \| |
| hi $-=1$ | $\cdots \log \mathrm{n}$ ? |
| return True | ... \| |

## How the model can affect time

## SO

Number of steps (running time) depends on the particular model you choose.

Which one is the best model?
No such thing.
I. Be clear about what the model is!
2. All reasonable deterministic models are polynomially equivalent.

## How the model can affect time

Which model does this correspond to ?


## How the model can affect time

The Random-Access Machine (RAM) model
Good combination of reality/simplicity.
$+,-, /, *,<,>$, etc. e.g. $245 * 12894$ take I unit time
memory access e.g. A[94] takes I unit time
Note:
Good model when, say, you work with int data type.
Not a good model if you are working with 1000000-digit numbers.

Which model are we going to use?

# Defining time complexity of an algorithm and <br> Intrinsic complexity of a problem 

## Defining running time

## Recall:

A computational problem $P$ is just a function

$$
P: \Sigma^{*} \rightarrow \Sigma^{*}
$$

that maps instances to solutions.

If P is of the form $P: \Sigma^{*} \rightarrow\{0,1\}$ it is called a decision problem.

An algorithm solves $P$ if it outputs the correct solution on every instance.

## Defining running time

With a specific computational model in mind:

## Definition:

The running time of an algorithm $A$ is a function

$$
T_{A}: \mathbb{N}^{+} \rightarrow \mathbb{N}^{+}
$$

defined by

$$
T_{A}(n)=\underset{\substack{\text { instances } I \\ \text { of size } n}}{\max }\{\# \text { steps } A \text { takes on } I\}
$$

We drop the subscript A , and write $T(n)$ when A is clear.
$n$ always denotes the input length.

## Why worst-case?

We are not dogmatic about it.
Can study "average-case" (random inputs)
Can try to look at "typical" instances.
Can do "smoothed analysis".

BUT worst-case analysis has its advantages:

- An ironclad guarantee.
- Matches our worst-case notion of an alg. solving a prob.
- Hard to define "typical" instances.
- Random instances are often not representative.
- Often much easier to analyze.


## Defining intrinsic complexity

With a specific computational model in mind:

The intrinsic complexity (with respect to running time) of a problem

$$
P: \Sigma^{*} \rightarrow \Sigma^{*}
$$

is defined by


How do you compare functions?

$$
n^{2} \leq 100 n \quad ?
$$

## The CS way to compare functions:

$$
\begin{array}{ccc}
O(\cdot) & \Omega(\cdot) & \Theta(\cdot) \\
\leq & \geq & =
\end{array}
$$

Our notation for $\leq$ when comparing functions.

The idea is that these functions represent computational complexity (e.g. time complexity)

We want to use the right level of abstraction!
"Sweet spot"

- coarse enough to suppress details like programming language, compiler, architecture,...
- sharp enough to make comparisons between different algorithmic approaches.


## Big Oh

$$
8 n^{2}-3 n+84
$$

Analogous to "too many significant digits".

$$
O\left(n^{2}\right)
$$

- We don't care about constant factors.
(even a change in alphabet size leads to constant factor difference)
What if the running time is $10^{20} n^{2}$ ?
- We don't care about small values of $n$.
(the only interesting instances are the big ones)


## Big Oh

Informal: An upper bound that suppresses constant factors and ignores small $n$.

Suppressing constant factors means suppressing lower order additive terms.

$$
n^{2}+100 n+500 \text { is } O\left(n^{2}\right)
$$

$$
601 n^{2}=n^{2}+100 n^{2}+500 n^{2}>n^{2}+100 n+500
$$

## Big Oh



## Big Oh



## Big Oh

Informal: An upper bound that suppresses constant factors and ignores small $n$.
For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$

$$
\begin{array}{ll}
f(n)=O(g(n)) & \text { roughly means } \\
f(n) \leq g(n) & \text { up to a constant factor } \\
\text { and ignoring small } \mathrm{n} .
\end{array}
$$

## Formal Definition:

For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ if there exists constants $C, n_{0}>0$ such that

$$
f(n) \leq C g(n) \quad \text { for all } n \geq n_{0}
$$

( $C$ and $n_{0}$ cannot depend on $n$.)

## Big Oh

## Formal Definition:

For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ if there exists constants $C, n_{0}>0$ such that

$$
f(n) \leq C g(n) \quad \text { for all } n \geq n_{0}
$$

( $C$ and $n_{0}$ cannot depend on $n$.)


## Big Oh

## Formal Definition:

For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ if there exists constants $C, n_{0}>0$ such that

$$
f(n) \leq C g(n) \quad \text { for all } n \geq n_{0}
$$

( $C$ and $n_{0}$ cannot depend on $n$.)

## Example:

$$
\begin{aligned}
& f(n)=3 n^{2}+10 n+30 \quad g(n)=n^{2} \\
& f(n)=O(g(n)) \\
& \text { Take } C=4, \quad n_{0}=13 \\
& \quad 3 n^{2}+10 n+30 \leq 4 n^{2} \quad \text { when } n \geq 13
\end{aligned}
$$

## Big Oh

## Example:

$$
\begin{aligned}
& f(n)=3 n^{2}+10 n+30 \quad g(n)=n^{2} \\
& f(n)=O(g(n)) \\
& \text { Take } C=4, \quad n_{0}=13 \\
& \quad 3 n^{2}+10 n+30 \leq 4 n^{2} \quad \text { when } \quad n \geq 13
\end{aligned}
$$

Proving $f(n)$ is $O(g(n))$ is like a game:
You pick constants $C, n_{0}$
Adversary picks $n \geq n_{0}$
You win if $\quad f(n) \leq C g(n)$
You need to make sure you always win.

## Big Oh

$1000 n$ is $O(n)$
$0.0000001 n$ is $O(n)$
$0.1 n^{2}+10^{20} n+10^{10000}$ is $O\left(n^{2}\right)$
$n$ is $O\left(2^{n}\right)$

## $\log _{9} n$ is $O(\log n)$

$\log _{b}(n)=\frac{\frac{\log _{k}(n)}{\log _{k}(b)}}{\text { constant }}$
$10^{10}$ is $O(1)$
$0.0000001 n^{2}$ is not $O(n)$
$n \log n$ is not $O(n)$

## Note on notation:

People usually write $4 n^{2}+2 n=O\left(n^{2}\right)$
Better notation would be $4 n^{2}+2 n \in O\left(n^{2}\right)$

## Run time scaling

## Running-time:

## Ratio:

double the input
$c \cdot n$

$c \cdot 2 n$
2
double the input
$c \cdot n^{2}$
$c \cdot(2 n)^{2}$
4

$c \cdot n^{3}$
$c \cdot(2 n)^{3}$

$$
8
$$

$c \cdot n^{k}$
double the input

$$
c \cdot(2 n)^{k}
$$

$$
2^{k}
$$

(constant)
double the input
$c \cdot 2^{n}$

$c \cdot 2^{2 n}$
$2^{n}$

## Big Oh

## Common Big Oh classes and their names

## Constant:

$O(1)$
Logarithmic:
$O(\log n)$
Square-root:
$O(\sqrt{n})=O\left(n^{0.5}\right)$
Linear:
$O(n)$
Loglinear:
$O(n \log n)$
Quadratic:
$O\left(n^{2}\right)$
Polynomial:
$O\left(n^{k}\right)$
Exponential:
$O\left(k^{n}\right)$

Big Oh


## $n$ vs $\log n$

How much smaller is $\log \mathrm{n}$ compared to n ?

| $\mathbf{n}$ | $\log \mathbf{n}$ |
| :---: | :---: |
| 2 | I |
| 8 | 3 |
| 128 | 7 |
| 1024 | 10 |
| $\mathrm{I}, 048,576$ | 20 |
| $\mathrm{I}, 073,74 \mathrm{I}, 824$ | 30 |
| $1, I 52,92 \mathrm{I}, 504,606,846,976$ | 60 |
| $\sim$ |  |

## $n$ vs $2^{\wedge} n$

How much smaller is n compared to $2^{\wedge} \mathrm{n}$ ?

| $\mathbf{2 A n}^{c} \mathbf{n}$ |  |
| :---: | :---: |
| 2 | I |
| 8 | 3 |
| 128 | 7 |
| 1024 | 10 |
| $I, 048,576$ | 20 |
| $I, 073,74 I, 824$ | 30 |
| $I, I 52,92 I, 504,606,846,976$ | 60 |

## Exponential running time

If your algorithm has exponential running time e.g. $\sim 2^{n}$


No hope of being practical.

## Exponential running time: Example

Given a list of integers, determine if there is a subset of the integers that sum to 0 .

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 4 & -3 & -2 & 7 & 99 & 5 & 1 \\
\hline
\end{array}
$$

## Exponential running time: Example

Given a list of integers, determine if there is a subset of the integers that sum to 0 .

| 4 | -3 | -2 | 7 | 99 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Exhaustive Search (Brute Force Search):

Try every possible subset and see if it sums to 0 .
Number of subsets is $2^{n}$
So running time is at least $2^{n}$


## Big Oh

$$
\log n \lll \sqrt{n} \ll n<n \log n \ll n^{2} \ll n^{3} \lll 2^{n} \lll 3^{n}
$$

The theoretical divide between efficient and inefficient:
If it is not $O\left(n^{k}\right)$ for some constant $k$
(if it does not have polynomial complexity)
then it is inefficient.

## Some exotic functions

$$
\begin{array}{ccc}
1 & n & 2^{n} \\
\log ^{*} n & n \log n & 3^{n} \\
\log \log n & n^{2} & n! \\
\log n & n^{3} & n^{n} \\
\sqrt{n} & n^{O(1)} & 2^{2^{n}} \\
n / \log n & n^{\log n} & 2^{2^{2}}:^{2} \\
& & n \text { times }
\end{array}
$$

Fastest algorithm for multiplication:

$$
n \cdot(\log n) \cdot 2^{O\left(\log ^{*} n\right)}
$$

## Big Omega

If $O(\cdot)$ is like $\leq$
$\Omega(\cdot)$ is like $\geq$
$O(\cdot)$
Informal: An upper bound that suppresses constant factors and ignores small $n$.
$\Omega(\cdot)$
Informal: A lower bound that suppresses constant factors and ignores small n .

## Big Omega

$\Omega(\cdot)$
Informal: A lower bound that suppresses constant factors and ignores small n .

## Formal Definition:

For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, we say $f(n)=\Omega(g(n))$ if there exists constants $c, n_{0}>0$ such that

$$
f(n) \geq c g(n) \quad \text { for all } n \geq n_{0} .
$$

( $c$ and $n_{0}$ cannot depend on $n$.)

## Big Omega

## Formal Definition:

For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, we say $f(n)=\Omega(g(n))$ if there exists constants $c, n_{0}>0$ such that

$$
f(n) \geq c g(n) \quad \text { for all } n \geq n_{0}
$$

( $c$ and $n_{0}$ cannot depend on $n$.)


## Big Omega

## Some Examples:

$$
10^{-10} n^{4} \text { is } \Omega\left(n^{3}\right)
$$

$0.001 n^{2}-10^{10} n-10^{30}$ is $\Omega\left(n^{2}\right)$
$n^{0.0001}$ is $\Omega(\log n)$
$n^{1.0001}$ is $\Omega(n \log n)$

## Theta

## If $O(\cdot)$ is like $\leq$ and $\Omega(\cdot)$ is like $\geq$ $\Theta(\cdot)$ is like $=$

## Theta

## Formal Definition:

For $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, we say $f(n)=\Theta(g(n))$ if $f(n)=O(g(n)) \quad$ and $\quad f(n)=\Omega(g(n))$.

## Equivalently:

There exists constants $c, C, n_{0}$ such that

$$
c g(n) \leq f(n) \leq C g(n) \quad \text { for all } n \geq n_{0}
$$

## Back to intrinsic complexity

## Defining intrinsic complexity

With a specific computational model and resource in mind:

The intrinsic complexity of a problem is the complexity of the most efficient algorithm solving it.

## Intrinsic complexity

If you give an algorithm that solves a problem
upper bound on the intrinsic complexity

How to show a lower bound on the intrinsic complexity?
Argue against all possible algorithms that solves the problem.

The dream: Get a matching upper and lower bound.

## Example

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

def twoFingers(s):

$$
\begin{aligned}
& \mathrm{lo}=1 \\
& \mathrm{hi}=\text { len }(\mathrm{s}) \\
& \text { while }(\mathrm{lo}<\mathrm{hi}): \\
& \quad \text { if }(\mathrm{s}[\mathrm{lo}]!=0 \text { or } \mathrm{s}[\mathrm{hi}]!=1): \\
& \quad \text { return False }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lo }+=1 \\
& \text { hi }-=1
\end{aligned}
$$

return True

In the RAM model:

$$
O(n)
$$

Could there be a faster algorithm?

$$
\text { e.g. } O(n / \log n)
$$

## Example

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

Fact: Any algorithm that decides $L$ must use $\geq n$ steps.
Proof:
Suppose there is an algorithm A that decides $L$ in $<n$ steps.
Let $I$ be instance (input) $a^{k} b^{k}$
When A runs on input $I$, there must be some index $j$ such that A never reads $I[j]$.
Let $I^{\prime}$ be the same as $I$, but with $j^{\prime}$ th coordinate reversed. ( $I^{\prime}$ is a NO instance)
When A runs on $I^{\prime}$, it has the same behavior as it does on $I$ But then A does not decide L. Contradiction.

## Example

$$
L=\left\{0^{k} 1^{k}: k \geq 0\right\}
$$

Fact: Any algorithm that decides $L$ must use $\geq n$ steps.

This shows the intrinsic complexity of $L$ is $\Omega(n)$.
But we also know the intrinsic complexity of $L$ is $O(n)$.
The dream achieved. Intrinsic complexity is $\Theta(n)$.

## Representation of the input

## How you represent the input matters

Technically, how the input is represented/encoded should be part of the problem description.

If it is not specified, input length is the number of bits needed to represent the input.

You should be careful about this!

## How you represent the input matters

## Multiplication Problem

Input: 2 numbers $s$ and $t$
Output: the product of $s$ and $t$
Obvious algorithm: Add $s$ to itself $t$ times.
How is the input represented?

$$
\begin{array}{lll}
\mathrm{s}=\| \| I \ldots I & (\mathrm{~s} \text { many Is)} & n=s+t \\
\mathrm{t}=\| \| I \ldots I & (\mathrm{t} \text { many Is)} &
\end{array}
$$

Running time:
$O(s t)$
$O\left(n^{2}\right)$

## How you represent the input matters

## Multiplication Problem

Input: 2 numbers $s$ and $t$
Output: the product of s and t
Obvious algorithm: Add $s$ to itself $t$ times.
How is the input represented?
$\mathbf{s}=$ binary representation of $\mathbf{s} \quad n \approx \log _{2} s+\log _{2} t$
$t=$ binary representation of $t$
We'll do s+s in binary, so it is $O(\log s)$ steps.
Running time: $\quad O(t \log s) \quad O\left(2^{n}\right)$

## How you represent the input matters

## Multiplication Problem

Input: 2 numbers $s$ and $t$
Output: the product of s and t
Obvious algorithm: Add $s$ to itself $t$ times.
This algorithm actually sucks!
When dealing with problems with integer inputs:
we want to be able to deal with numbers with say
a million binary digits.
So numbers of magnitude $2^{10^{6}}$.

## How you represent the input matters

## Multiplication Problem

Input: 2 numbers $s$ and $t$
Output: the product of $s$ and $t$
Obvious algorithm: Add $s$ to itself $t$ times.
Is there a more efficient algorithm?


## Strong Church Turing Thesis

## Church Turing Thesis

Church-Turing Thesis:
The intuitive notion of "computable" is captured by functions computable by a Turing Machine.

Physical Church-Turing Thesis:
Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong Church-Turing Thesis:
The intuitive notion of "efficiently computable" is captured by functions efficiently computable by a TM.

## Strong Church Turing Thesis

Experience suggests it is true for all deterministic models.
First main challenger in 1970s:
Randomized computation.
In light of research from 1980s, we believe SCCT holds even with randomized computation.

Second main challenger in 1980s:
Quantum computation.
In light of research from 1990s, we believe SCCT is not true!

Challenge all ideas!

