
February 3rd, 2015

15-251
Great Theoretical Ideas in

Computer Science
Introduction to Computational Complexity I

Reminder

Midterm 1

February 11th, 18:30 - 21:30

Covers Lectures 1-6 (first 3 homeworks)

What have we done so far?

> Introduction to the course
Computer science is no more about computers
than astronomy is about telescopes.

> Logic

Foundation of mathematics

> Formalization of computation/algorithm

Deterministic Finite Automata

Turing Machines

> The study of computation

Computability

What have we done so far?

> The study of computation

Computability

- Most problems are undecidable.

- Some very interesting problems undecidable.

But most interesting problems are decidable!

What is next?

> The study of computation

Computability

Computational Complexity (Practical Computability)

- How do we define complexity?

- What is the right level of abstraction to use?

- How do we analyze complexity?

- What can we do to better understand
 the complexity of problems?

- What are some interesting problems to study?

What is next?

1 million dollar question

(or maybe 6 million dollar question)

P = NP ???

Introduction to Computational Complexity

Computational complexity of an algorithm.

Computational complexity of a problem.

- complexity of the best algorithm computing the
 problem.

Complexity with respect to what?

- time (number of steps)

- space (memory)

- randomness

- quantum resources

Our focus
for now

Introduction to Computational Complexity

Church-Turing Thesis:

With respect to computability
the particular computational model doesn’t matter.

Unfortunately, this is not true with respect to
computational complexity.

The model makes a difference.

How the model can affect running time

A multitape Turing machine

� : Q⇥ �k ! Q⇥ �k ⇥ {L,R}k

(qi, a1, . . . , ak) 7! (qj , b1, . . . , bk, R, L, · · · , L)e.g.

t

t

t

Ordinary TM with multiple tapes, each with its own head.

Number of tapes is fixed (cannot grow with input size).

t

t

t

A multitape Turing machine

Ordinary TM with multiple tapes, each with its own head.

t

t

t

Is it more powerful?

Every multitape TM has an equivalent single tape TM.

Number of steps: (is the input length.)n

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Repeat while both 0s and 1s remain on the tape:

- Scan the tape, cross off a single 0 and a single 1.

- If 0s remain but no 1s remain or
 1s remain but no 0s remain reject

- Else accept

O(n2)

How the model can affect time

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Scan the 0s until the first 1, and copy the 0s to Tape 2.
- Scan the 1s. For each 1 read, cross off a 0 on Tape 2.

- Else reject (some 0s remain).

- If all 0s are crossed off before all 1s are read, reject.
- If all 0s are crossed off accept.

L = {0k1k : k � 0}

How many steps does a two-tape TM take?

Number of steps: O(n)
0 0 0 1 1 1
0 0 0

How the model can affect time

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Repeat while both 0s and 1s remain on the tape:

- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- If no 0s and no 1s remain accept.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- Else reject.

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… 0 0 0 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 0 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 0 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 0 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 0 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 0 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # 1 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 1 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 1 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 1

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # 0 # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # 0 # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # 1 # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # 1 #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # # #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # # #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

t t …… # # # 0 # # # # # # 1 # # #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

How many steps does a single-tape TM take?

Number of steps:

t t …… # # # 0 # # # # # # 1 # # #

- Repeat while both 0s and 1s remain on the tape:
- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

O(n log n)

- If no 0s and no 1s remain accept.
- Else reject.

How the model can affect time

L = {0k1k : k � 0}

Why is it correct?

- Scan the tape. If (# of 1s + # of 0s) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first 0.
 Cross off every other 1 starting with first 1.

(# of 1s + # of 0s) is odd if and only if

(# of 1s) and (# of 0s) have different parities.

Sequence of parities of (# of 1s) —>
 binary representation of (# of 1s) in the input

Sequence of parities of (# of 0s) —>
 binary representation of (# of 0s) in the input

How the model can affect time

L = {0k1k : k � 0}

Can we do better?

 is the best for 1-tape TMs.O(n log n)

 is the best for 2-tape TMs.O(n)

How the model can affect time

L = {0k1k : k � 0}

A function in Python:

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

of steps

1
1
1
3? 4? 5?
1
1
1
1 O(n)

Seems like

How the model can affect time

L = {0k1k : k � 0}

hi -= 1

Initially hi = n-1 (the length of the input - 1)

How many bits to store hi ? ⇠ log2 n

What if n is a power of 2 ?

1 0 0 0 0 0 … 0hi =

⇠ log2 n steps0 1 1 1 1 1 … 1hi =-1

How the model can affect time

L = {0k1k : k � 0}

A function in Python:

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

of steps

1
1
1
3? 4? 5?
1
1
log n ?
1 O(n log n) ?

How the model can affect time

L = {0k1k : k � 0}

Initially lo = 0, hi = n-1

Does it take n steps to go from s[0] to s[n-1] ?

if (s[lo] != 0 or s[hi] != 1):

How the model can affect time

L = {0k1k : k � 0}

A function in Python:

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

of steps

1
1
1
n ??
1
1
log n ?
1 ?O(n2)

How the model can affect time

SO

Number of steps (running time)
depends on the particular model you choose.

Which one is the best model?

No such thing.

1. Be clear about what the model is!
2. All reasonable deterministic models
 are polynomially equivalent.

How the model can affect time

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

1
1
1
3? 4? 5?
1
1
1
1

Which model does this correspond to ?

O(n)

How the model can affect time

The Random-Access Machine (RAM) model

Good combination of reality/simplicity.

+ , - , / , *, <, >, etc. take 1 unit timee.g. 245*12894

memory access takes 1 unit timee.g. A[94]

Note:

Good model when, say, you work with int data type.

Not a good model if you are working with
1000000-digit numbers.

Which model are we going to use?

Defining time complexity of an algorithm
and

Intrinsic complexity of a problem

Defining running time

Recall:

A computational problem P is just a function

P : ⌃⇤ ! ⌃⇤

If P is of the form P : ⌃⇤ ! {0, 1}
it is called a decision problem.

that maps instances to solutions.

An algorithm solves P if it outputs the correct solution
on every instance.

Defining running time

Definition:

The running time of an algorithm A is a function

TA : N+ ! N+

defined by

TA(n) = max

instances I
of size n

{# steps A takes on I}

We drop the subscript A, and write when A is clear.T (n)

With a specific computational model in mind:

worst-case

 always denotes the input length.n

Why worst-case?

BUT worst-case analysis has its advantages:

- An ironclad guarantee.

- Matches our worst-case notion of an alg. solving a prob.

- Hard to define “typical” instances.

We are not dogmatic about it.

Can do “smoothed analysis”.

Can study “average-case” (random inputs)

…

Can try to look at “typical” instances.

- Random instances are often not representative.

- Often much easier to analyze.

Defining intrinsic complexity

With a specific computational model in mind:

The intrinsic complexity (with respect to running time)
of a problem

is defined by

P : ⌃⇤ ! ⌃⇤

min
algorithms A
that solve P

TA(·)

How do you compare functions?

n2  100n ?

???

O(·) ⌦(·) ⇥(·)

The CS way to compare functions:

 � =

Big Oh

Our notation for when comparing functions.

The idea is that these functions represent
computational complexity (e.g. time complexity)

We want to use the right level of abstraction!

“Sweet spot”
- coarse enough to suppress details like
 programming language, compiler, architecture,…
- sharp enough to make comparisons between
 different algorithmic approaches.

Big Oh

- We don’t care about constant factors.

(even a change in alphabet size leads to
 constant factor difference)

8n2 � 3n+ 84

Analogous to “too many significant digits”.

- We don’t care about small values of n.
(the only interesting instances are the big ones)

What if the running time is ?1020n2

O(n2)

Big Oh
Informal: An upper bound that
suppresses constant factors and ignores small n.

Suppressing constant factors means
suppressing lower order additive terms.

n2 + 100n+ 500 is O(n2)

601n2 = n2 + 100n2 + 500n2 > n2 + 100n+ 500

Big Oh

Big Oh

Big Oh

For

f(n) = O(g(n)) roughly means

f(n)  g(n) up to a constant factor
and ignoring small n.

f, g : N+ ! R+

Formal Definition:

For , we say iff(n) = O(g(n))

there exists constants , such thatC n0 > 0

f(n)  Cg(n) for all n � n0.

(and cannot depend on .) C n0 n

f, g : N+ ! R+

Informal: An upper bound that
suppresses constant factors and ignores small n.

Big Oh
Formal Definition:

For , we say iff(n) = O(g(n))

there exists constants , such thatC n0 > 0

f(n)  Cg(n) for all n � n0.

(and cannot depend on .) C n0 n

f, g : N+ ! R+

n0
n

2g(n)

g(n)
f(n)

Big Oh
Formal Definition:

For , we say iff(n) = O(g(n))

there exists constants , such thatC n0 > 0

f(n)  Cg(n) for all n � n0.

(and cannot depend on .) C n0 n

f, g : N+ ! R+

Example:
f(n) = 3n2 + 10n+ 30 g(n) = n2

f(n) = O(g(n))

Take C = 4, n0 = 13

when n � 133n2 + 10n+ 30  4n2

Big Oh
Example:

f(n) = 3n2 + 10n+ 30 g(n) = n2

f(n) = O(g(n))

Take C = 4, n0 = 13

when n � 133n2 + 10n+ 30  4n2

Proving f(n) is O(g(n)) is like a game:

You pick constants C, n0

You win if f(n)  Cg(n)

You need to make sure you always win.

Adversary picks n � n0

logb(n) =
logk(n)

logk(b)

Big Oh

1000n is O(n)

0.0000001n is O(n)

log9 n is O(log n)

0.0000001n2
is not O(n)

n is O(2n)

constant0.1n2 + 1020n+ 1010000 is O(n2)

n log n is not O(n)

Note on notation:

People usually write 4n2 + 2n = O(n2)

Better notation would be 4n2 + 2n 2 O(n2)

1010 is O(1)

Run time scaling

Running-time:

c · n
double the input

c · 2n

Ratio:

2

c · n2
double the input

c · (2n)2 4

c · n3 c · (2n)3
double the input

8

c · nk c · (2n)k
double the input

2k

(constant)

c · 2n c · 22n
double the input

2n

Big Oh

Constant: O(1)

Logarithmic: O(log n)

Square-root: O(
p
n) = O(n0.5)

Linear: O(n)

Loglinear: O(n log n)

Quadratic: O(n2)

Exponential: O(kn)

Polynomial: O(nk)

Common Big Oh classes and their names

Big Oh

n vs log n

How much smaller is log n compared to n ?

n log n

2 1
8 3

128 7
1024 10

1,048,576 20
1,073,741,824 30

1,152,921,504,606,846,976 60

~ 1 quintillion

n vs 2^n

2^n n

2 1
8 3

128 7
1024 10

1,048,576 20
1,073,741,824 30

1,152,921,504,606,846,976 60

How much smaller is n compared to 2^n ?

Exponential running time

If your algorithm has exponential running time
e.g. ⇠ 2n

No hope of being practical.

Exponential running time: Example

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

-3 -2 7 99 5 14

Exponential running time: Example

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

Exhaustive Search (Brute Force Search):

Try every possible subset and see if it sums to 0.

Number of subsets is 2n

So running time is at least 2n

Given an array of size 150,

-3 -2 7 99 5 14

Big Oh

log n <<<
p
n << n < n log n << n2 << n3 <<< 2

n <<< 3

n

The theoretical divide between efficient and inefficient:

If it is not for some constant O(nk) k

(if it does not have polynomial complexity)

then it is inefficient.

Some exotic functions

1

log log n

log

⇤ n

log n
p
n

n/ log n

n

n log n

n2

n3

nO(1)

nlogn

2n

3n

n!

nn

22
n

...

22
2

2

n times
Fastest algorithm for multiplication:

n · (log n) · 2O(log

⇤ n)

Big Omega

 is like

If is like O(·) 

⌦(·) �

Informal: An upper bound that
suppresses constant factors and ignores small n.

O(·)

Informal: A lower bound that
suppresses constant factors and ignores small n.

⌦(·)

Big Omega

Informal: A lower bound that
suppresses constant factors and ignores small n.

⌦(·)

Formal Definition:

For , we say if

there exists constants , such thatn0 > 0

for all n � n0.

(and cannot depend on .) n0 n

f, g : N+ ! R+ f(n) = ⌦(g(n))

c

f(n) � cg(n)

c

Big Omega

n0
n

f(n)

g(n)

1

2
g(n)

Formal Definition:

For , we say if

there exists constants , such thatn0 > 0

for all n � n0.

(and cannot depend on .) n0 n

f, g : N+ ! R+ f(n) = ⌦(g(n))

c

f(n) � cg(n)

c

Big Omega

n0.0001
is ⌦(log n)

n1.0001
is ⌦(n log n)

0.001n2 � 1010n� 1030 is ⌦(n2)

10�10n4 is ⌦(n3)

Some Examples:

Theta

and is like

If is like O(·) 

⌦(·) �

 is like ⇥(·) =

Theta

Formal Definition:

For , we say iff, g : N+ ! R+ f(n) = ⇥(g(n))

f(n) = O(g(n)) f(n) = ⌦(g(n))and .

Equivalently:

There exists constants such thatc, C, n0

cg(n)  f(n)  Cg(n) for all n � n0.

Back to intrinsic complexity

Defining intrinsic complexity

The intrinsic complexity of a problem is the
complexity of the most efficient algorithm solving it.

With a specific computational model and resource
in mind:

Intrinsic complexity

If you give an algorithm that solves a problem

upper bound on the intrinsic complexity

How to show a lower bound on the intrinsic complexity?

Argue against all possible algorithms that solves
the problem.

The dream: Get a matching upper and lower bound.

Example

L = {0k1k : k � 0}

def twoFingers(s):
lo = 1
hi = len(s)
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

In the RAM model:

O(n)

Could there be
a faster algorithm?

e.g. O(n/ log n)

Example

L = {0k1k : k � 0}

Fact: Any algorithm that decides L must use steps.

Proof:
Suppose there is an algorithm A that decides L in steps. < n

Let be instance (input) I akbk

When A runs on input , there must be some index
such that A never reads .

I
I[j]

j

Let be the same as , but with j’th coordinate reversed.I 0 I
I 0(is a NO instance)

When A runs on , it has the same behavior as it does onI 0 I

But then A does not decide L. Contradiction.

� n

Example

L = {0k1k : k � 0}

Fact: Any algorithm that decides L must use steps.� n

This shows the intrinsic complexity of L is .⌦(n)

But we also know the intrinsic complexity of L is O(n).

The dream achieved. Intrinsic complexity is ⇥(n).

Representation of the input

How you represent the input matters

Technically, how the input is represented/encoded
should be part of the problem description.

If it is not specified, input length is the number of bits
needed to represent the input.

You should be careful about this!

How you represent the input matters

Multiplication Problem
Input: 2 numbers s and t

Output: the product of s and t

How is the input represented?

s = 111…1 (s many 1s)

t = 111…1 (t many 1s)

Obvious algorithm: Add s to itself t times.

Running time: O(st) O(n2)

n = s+ t

How you represent the input matters

Multiplication Problem
Input: 2 numbers s and t

Output: the product of s and t

How is the input represented?

Obvious algorithm: Add s to itself t times.

s = binary representation of s

t = binary representation of t

n ⇡ log2 s+ log2 t

We’ll do s+s in binary, so it is steps.O(log s)

Running time: O(t log s) O(2n)

How you represent the input matters

Multiplication Problem
Input: 2 numbers s and t

Output: the product of s and t

This algorithm actually sucks!

Obvious algorithm: Add s to itself t times.

When dealing with problems with integer inputs:

we want to be able to deal with numbers with say
a million binary digits.

So numbers of magnitude .210
6

How you represent the input matters

Multiplication Problem
Input: 2 numbers s and t

Output: the product of s and t

Is there a more efficient algorithm?

Obvious algorithm: Add s to itself t times.

5 6 7 8
1 2 3 4x

2 2 7 1 2
1 7 0 3 4

1 1 3 5 6
5 6 7 8+
7 0 0 6 6 5 2

O(n2)

Can we do better?

Strong Church Turing Thesis

Church Turing Thesis

Church-Turing Thesis:
The intuitive notion of “computable” is captured by
functions computable by a Turing Machine.

Physical Church-Turing Thesis:
Any computational problem that can be solved by a
physical device, can be solved by a Turing Machine.

Strong Church-Turing Thesis:
The intuitive notion of “efficiently computable” is
captured by functions efficiently computable by a TM.

Strong Church Turing Thesis

Experience suggests it is true for all deterministic models.

First main challenger in 1970s:

Randomized computation.

In light of research from 1980s, we believe
SCCT holds even with randomized computation.

Second main challenger in 1980s:

Quantum computation.

In light of research from 1990s, we believe
SCCT is not true!

Challenge all ideas!

