|5-251
Great Theoretical Ideas in

Computer Science

Introduction to Computational Complexity |

February 3rd, 2015

Reminder

Midterm |

February | Ith, 18:30 - 21:30

Covers Lectures |-6 (first 3 homeworks)

What have we done so far?

> |Introduction to the course

Computer science is no more about computers
than astronomy is about telescopes.

> Logic
Foundation of mathematics
> Formalization of computation/algorithm

Deterministic Finite Automata

Turing Machines

> The study of computation

Computability

What have we done so far?

> The study of computation
Computability
- Most problems are undecidable.

- Some very interesting problems undecidable.

But most interesting problems are decidable!

What is next!?

> The study of computation
Computability
Computational Complexity (Practical Computability)
- How do we define complexity?
- What is the right level of abstraction to use!?
- How do we analyze complexity!?

- What are some interesting problems to study?

- What can we do to better understand
the complexity of problems!?

What is next!

ABOUT PROGRAMS [MIEEENBIUMPROBIEME SEOPLE PUBLICATIONS EUCLID EVENTS

Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simufations suggest the existence of a "mass gag" in the solution 10 the quantum versions of the Yang:Mills equations. But no

| | | million dollar question
Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average.
Formulated in Riemann’s 1857 paper, it asserts that all the ‘'non-obvicus” peros of the neta function are complex numbers with real part 1/2

————— (or maybe 6 million dollar question

s easy Yo) 10N 10 3 problem is correct, is it 330 easy 10 solve the problem? This is the essence of the P vs NP guestion. Typical of the
NP problems is that of the Hamiltonian Path Problesc given N cities to visit, how can one do this without visiting a dty twice? If you give me a solution, |

Can easily check that & is correct. But | canmot 30 easily find a solution,
Navier-Stokes Equation e

This Is the equation which governs the flow of flulds such as water and alr. Mowever, there s no proof for the most basic questions one can asic do
solutions exist, and are they unigue? Wiy ask for a proof? Because a proof gives not only certitude, et also understanding.

Hodge Conjecture

The answer 1O this conjecture determines how much of the topoiogy of the solution set of a system of algebraic equations can be defned in terms of
further algebraic equations. The Hodge conjecture is known in certain special cases, e g, when the solution set has dimension less than four, But in
dimension fowr it is unknown.

Poincaré Conjecture

In 1904 the French mathematician Henri Poincaré asked if the three dimensional sphere is characterized a3 the unique simply connected three
manifold. This question, the Poincaré conjecture, was a special case of Thurston's geometrization conjecture. Pereiman’s proof tells us that every three
manifold is Dot from a set of standard pieces, each with one of eight well-understood peomaetries,

Birch and Swinnerton-Dyer Conjecture

Supported by mwach experismental evidence, this conjecture relates the rumber of points on an elliptic curve mod p 10 the rank of the growp of raticeal
points. Elliptic curves, defined by cublic equations in two variables, are fundamental mathematical objects that arise In many areas: Wiles' proof of the
Fermat Conjecture, factorization of numbers into primes, and cryplography, to name three.

Introduction to Computational Complexity

Computational complexity of an algorithm.

Computational complexity of a problem.

- complexity of the best algorithm computing the
problem.

Complexity with respect to what?
. Our focus
- time (number of steps)
for now
- space (memory)
- randomness

- quantum resources

Introduction to Computational Complexity

Church-Turing Thesis:

With respect to computability
the particular computational model doesn’t matter.

Unfortunately, this is not true with respect to
computational complexity.

The model makes a difference.

How the model can affect running time

A multitape Turing machine

Ordinary TM with multiple tapes, each with its own head.

l

L

1

0

0

0

0

0

0

0

State
Control

T

1

l

L

a

b

b

a

c

b

a

Multiple Tape/Head Turing Machines

Number of tapes is fixed (cannot grow with input size).

6:QxT* = QxTI*x{L, R}

e.g. (Qiaaflv IR ,Clk) — (C_Zjvbl? .

'7bk7R7L7”° 7L)

A multitape Turing machine

Ordinary TM with multiple tapes, each with its own head.

l Uf1]ofo]ofo]ofo]o]z---
State
Control [* v

T f1]ofo]1f1]ofo]o]z

la|b|b|a]lc|b|alc]z---

Multiple Tape/Head Turing Machines

s it more powerful?

Every multitape TM has an equivalent single tape TM.

How the model can affect time
L ={0"1* : k >0}

How many steps does a single-tape TM take!?

On input string w:
- Scan the input and reject if a 0 is found to the right of a |.
- Repeat while both Os and |s remain on the tape:
- Scan the tape, cross off a single 0 and a single |.

- If Os remain but no |s remain or
|'s remain but no Os remain reject

- Else accept

Number of steps: O(n?) (1 is the input length.)

How the model can affect time
L ={0"1%: k > 0}

How many steps does a two-tape TM take!?

On input string w:
- Scan the input and reject if a 0 is found to the right of a |.
- Scan the Os until the first |, and copy the Os to Tape 2.

- Scan the Is. For each | read, cross off a 0 on Tape 2.
- If all Os are crossed off before all Is are read, reject.
- If all Os are crossed off accept.

- Else reject (some Os remain).

ofofo]1]1]]
Number of steps: O(n) ojofo] | |

How the model can affect time
L ={0"1* : k >0}

How many steps does a single-tape TM take!?

On input string w:
- Scan the input and reject if a 0 is found to the right of a |.
- Repeat while both Os and |s remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AUT010[0O[O]O (O[Ol]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULHEIO[O[O]O(O[O L[l]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULHEIO[O[O]O(O[O L[l]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULHEIO[O[O]O(O[O L[l]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULHE|O[H#[O]JO[O[O L[]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

§

AULHE|O[H#[O]JO[O[O L[]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

¢

AULHE|O[H#[O]JO[O[O L[]l]U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AULHEH|O|H#|O(H#[O[O L[]]0U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULHEH|O|H#|O(H#[O[O L[]]0U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULHEH|O|H#|O(H#[O[O L[]]0U

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULH|O|H#|O[H[O[HF| L[]]0L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULH|O|H#|O[H[O[HF| L[]]0L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AULH|O|H#|O[H[O[HF|H#| LT[]T]]]L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AULH|O|H#|O[H[O[HF|H#| LT[]T]]]L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

§

AULH|O|H#|O[H[O[HF|H#| LT[]T]]]L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AU H|O|H#|O(H[O|HF|H#||HF|[I[I]IT]]]L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

¢

AU H|O|H#|O(H[O|HF|H#||HF|[I[I]IT]]]L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AU H|O|H#|O(H[O|HF|H#||HF|[I[I]IT]]]L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AU H|O|H#|O(H#|[O|HF|H#||H|I[#]I]]]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AU H|O|H#|O(H#|[O|HF|H#||H|I[#]I]]]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

:

AU H|O|H#|O(H#|[O|HF|H#||H|I[#]I]]]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AU H|O|H#|O(H#|[O|HF|H#|I|H#|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

AU H|O|H#|O(H#|[O|HF|H#|I|H#|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AU H|O|H#|O(H#|[O|HF|H#|I|H#|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AU H|O|H#|O(H#|[O|HF|H#|I|H#|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AU H|O|H#|O(H#|[O|HF|H#|I|H#|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

AU H|H#|H|O|H|[O|HF|H||H|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AU H|H#|H|O|H|[O|HF|H||H|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

§

AU H|H#|H|O|H|[O|HF|H||H|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AU H|H#|H|O|H|[O|HF|H||H|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

AU H|H#|H|O|H|[O|HF|H||H|I|[#]|I] |#]|UL

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

U H|#|H|O|H[(HF|HF|H||HF|][#]] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

U H|#|H|O|H[(HF|HF|H||HF|][#]] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

U H|#|H|O|H[(HF|HF|H||HF|][#]] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

U H|#|H|O|H[(HF|HF|H||HF|][#]] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

WU H|#|H|O|H|HF|HFIH|F|H|||[#]|] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

WU H|#|H|O|H|HF|HFIH|F|H|||[#]|] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

¢

WU H|#|H|O|H|HF|HFIH|F|H|||[#]|] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

i

WU H|#|H|O|H|HF|HFIH|F|H|||[#]|] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

WU H|#|H|O|H|HF|HFIH|F|H|||[#]|] |#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

WU H|#|H|O|H#|HF|HF|H|F|H|||[#|#|#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

WU H|#|H|O|H#|HF|HF|H|F|H|||[#|#|#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

WU H|#|H|O|H#|HF|HF|H|F|H|||[#|#|#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.

- Else reject.

How the model can affect time
L={0"1%: k> 0}

How many steps does a single-tape TM take!?

‘

WU H|#|H|O|H#|HF|HF|H|F|H|||[#|#|#]|L

- Repeat while both Os and Is remain on the tape:
- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other O starting with first 0.
Cross off every other | starting with first |.

- If no Os and no |s remain accept.
- Else reject.

Number of steps: O(nlogn)

How the model can affect time
L={0"1%: k> 0}

Why is it correct?

- Scan the tape. If (# of |s + # of Os) is odd, reject.

- Scan the tape. Cross off every other 0 starting with first O.
Cross off every other | starting with first |.

(# of |s + # of Os) is odd if and only if

(# of |s) and (# of Os) have different parities.
Sequence of parities of (# of |s) —>
binary representation of (# of |s) in the input

Sequence of parities of (# of Os) —>
binary representation of (# of Os) in the input

How the model can affect time
L={0"1%: k> 0}
Can we do better?
O(nlogn) is the best for |-tape TMs.
O(n) is the best for 2-tape TMs.

How the model can affect time

L={0"1%: k> 0}

A function in Python: # of steps
def twoFingers(s):
JO =0 < coeeeeeeeeaaaeeiiiiiiee]
hi = 1en(S)-F- cvvermrenemnaninnnn, e
while (10 < hi): -oovvveeeeieeinnnn. oo |
if (s[lo] '=0or sfhi] !=1): ----f--- 3?2 4? §?
return False ---ccooeeeeeeenn. e |
PR T [oo |
| SRR oo | Seems like
FOLUETY TIUE - vvvvevverrerenneneenens e | O(n)

How the model can affect time

L={0"1%: k> 0}
hi =1
Initially hi = n-1 (the length of the input - 1)

How many bits to store hi? ~logyn

What if n is a power of 2 ?

hi= 100000...0
'I<>hi= Ol 1111, 1 ~ log, n steps

How the model can affect time

L={0"1%: k> 0}

A function in Python: # of steps
def twoFingers(s):
JO =0 < coeeeeeeeeaaaeeiiiiiiee]
hi = 1en(8)-F- vvrerreernrneniirannnd e
while (10 < hi): ~cvvoeeveeeniaeinnnn. oo |
if (s[lo] '=0or sfhi] !=1): ----f--- 3?2 4? §?
return False ----cooooeeeenn.. e |
PR T [oo |
| SRR - logn?
FOLUIT TIUE v vvveerrmrrreeeonnnnens e | O(n log n))

How the model can affect time

L={0"1%: k> 0}

if (s[lo] !=0 or s[h1] !=1):

Initially lo =0, hi =n-I

Does it take n steps to go from s[0] to s[n-1] ?

How the model can affect time

L={0"1%: k> 0}

A function in Python: # of steps
def twoFingers(s):
JO =0 -vvvvrmmm e,]
hi = 1EN(S)- - cvevvvemeneeeeeeniinnn.]
while (Io <hi): ----cvvveiiiiin, oo |
if (s[lo] '=0orsfhi] !=1): ----f--- n 2?
return False -------cccevnni coe |
JO 4= 1 cvovvvvrreeeeamineeeeannn] |
T - logn?
FEtULN TIUE v vvvvvvvvrrrreeeeannnnns |

How the model can affect time

SO

Number of steps (running time)
depends on the particular model you choose.

Which one is the best model?

No such thing.

|. Be clear about what the model is!

2. All reasonable deterministic models
are polynomially equivalent.

How the model can affect time

Which model does this correspond to ?

def twoFingers(s):
JO =0 -vvvrrrnmniaa, S
hi = JEN(S)-F-vvvveeemmnaeeinaaanann. e |
while (]0 < hi); oo |
if (s[lo] =0 or sfhi] !=1): ----|--- 3?2 4? §?
return False ------ccccvvvvt oo |
JO 4= 1 coovvvvreeeeemmiiieeeeann] o
hi-=1 - ccvceeveemmeennennnnnnn. o
FEtULN TIUE - cccccvvvvvrrreeeemnnnnn . O(n)

How the model can affect time

The Random-Access Machine (RAM) model

Good combination of reality/simplicity.

+,-,/,%<,>etc. eg 245%12894 take | unit time

memory access e.g. A[94] takes | unit time
Note:

Good model when, say, you work with int data type.

Not a good model if you are working with
1000000-digit numbers.

Which model are we going to use?

Defining time complexity of an algorithm
and
Intrinsic complexity of a problem

Defining running time

Recall:

A computational problem P is just a function
P =X

that maps instances to solutions.

If P is of the form P : " — {0,1}
it is called a decision problem.

An algorithm solves P if it outputs the correct solution
on every instance.

Defining running time

With a specific computational model in mind:

Definition:

_

The running time of an algorithm A is a function

defined by
Ta(n) =

TA:N_I_%N_I_

worst-case
steps A takes on [}

instances I
of size n

/

We drop the subscript A, and write T'(n) when A is clear.

n always denotes the input length.

Why worst-case!

We are not dogmatic about it.

Can study “average-case” (random inputs)
Can try to look at “typical” instances.
Can do “smoothed analysis™.

BUT worst-case analysis has its advantages:

- An ironclad guarantee.

- Matches our worst-case notion of an alg. solving a prob.
- Hard to define “typical” instances.
- Random instances are often not representative.

- Often much easier to analyze.

Defining intrinsic complexity

With a specific computational model in mind:

The intrinsic complexity (with respect to running time)
of a problem

P .Y =X
is defined by

min = Ty(:) <«—— N
algorithms A
that solve P

How do you compare functions!?

n® < 100n ?

The CS way to compare functions:
O() Q) o()

< > =

Big Oh

Our notation for < when comparing functions.

The idea is that these functions represent
computational complexity (e.g. time complexity)

We want to use the right level of abstraction!

“Sweet spot”

- coarse enough to suppress details like
programming language, compiler, architecture,...

- sharp enough to make comparisons between
different algorithmic approaches.

Big Oh

83n® — 3n + 84
Analogous to “‘too many significant digits”.

O(n2)
- We don’t care about constant factors.

(even a change in alphabet size leads to
constant factor difference)

What if the running time is 10°°n° ?

- We don’t care about small values of n.
(the only interesting instances are the big ones)

Big Oh

Informal: An upper bound that
suppresses constant factors and ignores small n.

Suppressing constant factors means
suppressing lower order additive terms.

n” + 100n + 500 is O(n”)

601n% = n? + 100n? + 50012 > n? + 100n + 500

1000000

800000 -

600000 +

I(n)

400000 A

200000+

100 million 4

80 million

B0 million 4

40 million 4

20 million 4

Big Oh

Informal: An upper bound that
suppresses constant factors and ignores small n.

For f g: Nt - R*
f(n) =0(g(n)) roughly means

f(n) < g(n) up to a constant factor

and ignoring small n.
Formal Definition:

For f,g : NT = R",wesay f(n)=0(g(n)) if
there exists constants C, ng > 0 such that

f(n) < Cg(n) for all n > ng.

(C and ng cannot depend on n.)

Formal Definition:

Big Oh

For f,g:NT — R%,wesay f(n)=0(g(n)) if
there exists constants C, ng > 0 such that
f(n) < Cg(n)

(C and ng cannot depend on n.)

A

2g(n)

for all n > ng.

fn)

g(n)

Big Oh
Formal Definition:
For f,g:NT — R%,wesay f(n)=0(g(n)) if
there exists constants C, ng > 0 such that
f(n) < Cg(n) for all n > ng.

(C and ng cannot depend on n.)

Example:
f(n) = 3n* + 10n + 30 g(n) =n?
f(n) = 0O(g(n))
Take C' =4, ng=13
3n° +10n+30 < 4n* when n > 13

Big Oh
Example:
f(n) = 3n* + 10n + 30 g(n) =n?

f(n) =0(g(n))
Take C =4, ng =13
3n° +10n+30 < 4n* when n > 13

Proving f(n) is O(g(n)) is like a game:

You pick constants (', ng

,3 Adversary picks n > nyg

You win if f(n) < Cg(n)

You need to make sure you always win.

Big Oh

10007 is O(n) logg n is O(logn)
0.0000001n is O(n) flogb(n) _ 10gk(n)J
0.1n° + 10%°n + 10'%°? is O(n?) - C(;iksf;nt
n is O(2") 101 is O(1)

0.0000001n° is not O(n)

nlogn is not O(n)

Note on notation:

People usually write 4n° + 2n = O(n®)

Better notation would be 4n° + 2n € O(n?)

Run time scaling

Running-time:

C .

2n

double the input
—

double the input
—

double the input
—

double the input
—

double the input
P

Ratio:

8

2k3

(constant)

2’n

Big Oh

Common Big Oh classes and their names

Constant: O(1)
Logarithmic: O(logn)
Square-root: O(v/n) = O(n"®)
Linear: O(n)

Loglinear: O(nlogn)
Quadratic: O(n?)
Polynomial: O(n")

Exponential: O(k"™)

n vs log n

How much smaller is log n compared to n?

n log n
2 I
8 3
|28 7/
1024 |0
1,048,576 20
1,073,741,824 30
1,152,921,504,606,846,976 60

~ | quintillion

n vs 2'n

How much smaller is n compared to 2*n !

2Mn n

2 I

8 3

|28 7/
1024 |0
1,048,576 20
1,073,741,824 30
1,152,921,504,606,846,976 60

Exponential running time

If your algorithm has exponential running time
eg. ~ 2"

DANGER

No hope of being practical.

Exponential running time: Example

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

4 1-3|-2|17 |99 5| |

Exponential running time: Example

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

4 1-3|-2|7 |99 5| |

Exhaustive Search (Brute Force Search):

Try every possible subset and see if it sums to O.

Number of subsets is 2"
So running time is at least 2"

DANGER

Big Oh

logn <<< v/n<<n<nlogn << n? <<n® <<< 2" <<< 3"

The theoretical divide between efficient and inefficient:

If it is not O(n") for some constant k&
(if it does not have polynomial complexity)

then it is inefficient.

Some exotic functions

1 n 2"
log* n nlogn 3"
log log n n? n!
logn n> n"
N n,O01) 92"
)
n/logn nlogm 222:\

n times
Fastest algorithm for multiplication:

n - (logn) - 200" n)

Big Omega

If O(-) islike <
Q) is like >
O()

Informal: An upper bound that
suppresses constant factors and ignores small n.

Q)
Informal: A lower bound that
suppresses constant factors and ignores small n.

Big Omega
Q)

Informal: A lower bound that
suppresses constant factors and ignores small n.

Formal Definition:
For f,g:NT — R*,wesay f(n)=Q(g(n)) if
there exists constants ¢, 19 > 0 such that

f(n) > cg(n) for all n > ng.

(¢ and ny cannot depend on n.)

Big Omega
Formal Definition:
For f,g:NT — R",wesay f(n)=Q(g(n)) if
there exists constants ¢, ng > 0 such that
f(n) > cg(n) for all n > ng.

(¢ and ny cannot depend on n.)

A

Big Omega
Some Examples:
107 1%% is Q(n?)
0.001n* — 100 — 10°Y is Q(n?)

n’ %% is Q(log n)

n'99%% is Q(nlogn)

Theta

If O(-) is like
and €(-) is like
O(-) is like

Vo IA

Theta

Formal Definition:
For f,g : NT = RT,wesay f(n)=0(g(n)) if

f(n) =0(g(n)) and f(n)=Q(g(n)).

Equivalently:

There exists constants ¢, (C,ng such that

cg(n) < f(n) <Cg(n) forall n > ng.

Back to intrinsic complexity

Defining intrinsic complexity

With a specific computational model and resource
in mind:

The intrinsic complexity of a problem is the
complexity of the most efficient algorithm solving it.

Intrinsic complexity

If you give an algorithm that solves a problem

w===p upper bound on the intrinsic complexity

How to show a lower bound on the intrinsic complexity?

Argue against all possible algorithms that solves
the problem.

The dream: Get a matching upper and lower bound.

Example

L={0"1%: k> 0}

def twoFingers(s):
lo=1 In the RAM model:
h1 = len(s) O(TL)
while (lo < hi):

if (s[lo] '=0 or s[hi] !=1):
return False

Could there be

lo+=1 .
a faster algorithm!?

hi -=1
return True c.8 O(n/ log n)

Example
L={0"1%: k> 0}
Fact: Any algorithm that decides L must use > n steps.

Proof:
Suppose there is an algorithm A that decides L in < n steps.

Let I be instance (input) a”b"

When A runs on input [, there must be some index j
such that A never reads |j].

Let I’ be the same as I, but with j’th coordinate reversed.
(I’ is a NO instance)

When A runs on I’, it has the same behavior as it does on [

But then A does not decide L. Contradiction. |:|

Example
L={0"1%: k> 0}

Fact: Any algorithm that decides L must use > n steps.

This shows the intrinsic complexity of Lis €2(n) .
But we also know the intrinsic complexity of Lis O(n).

The dream achieved. Intrinsic complexity is O (n).

Representation of the input

How you represent the input matters

Technically, how the input is represented/encoded
should be part of the problem description.

If it is not specified, input length is the number of bits
needed to represent the input.

You should be careful about this!

How you represent the input matters

Multiplication Problem

Input: 2 numbers s and t

Output: the product of s and t

Obvious algorithm: Add s to itself t times.

How is the input represented!?

s=11l...1 (s many ls) n=s+t
t=1I1I...1 (tmany Is)

Running time: O(st) O(n%)

How you represent the input matters

Multiplication Problem

Input: 2 numbers s and t

Output: the product of s and t

Obvious algorithm: Add s to itself t times.

How is the input represented!?

s = binary representation of s n ~ log, s + log, t

t = binary representation of t
WEe'll do s+s in binary, soitis O(logs) steps.

Running time: O(tlogs) O(2")

How you represent the input matters

Multiplication Problem

Input: 2 numbers s and t

Output: the product of s and t

Obvious algorithm: Add s to itself t times.

This algorithm actually sucks!

When dealing with problems with integer inputs:

we want to be able to deal with numbers with say
a million binary digits.

So numbers of magnitude 210°,

How you represent the input matters

Multiplication Problem

Input: 2 numbers s and t

Output: the product of s and t

Obvious algorithm: Add s to itself t times.

Is there a more efficient algorithm?

5678
x |1234
22712
17034 O(n”)
| 1 356
+ 5678 Can we do better?
7006652

Strong Church Turing Thesis

Church Turing Thesis

Church-Turing Thesis:

The intuitive notion of “computable” is captured by
functions computable by a Turing Machine.

Physical Church-Turing Thesis:

Any computational problem that can be solved by a
physical device, can be solved by a Turing Machine.

Strong Church-Turing Thesis:

The intuitive notion of “efficiently computable” is
captured by functions efficiently computable by a TM.

Strong Church Turing Thesis

Experience suggests it is true for all deterministic models.

First main challenger in 1970s:

Randomized computation.

In light of research from |1980s, we believe
SCCT holds even with randomized computation.

Second main challenger in 1980s:
Quantum computation.

In light of research from 1990s, we believe
SCCT is not true!

Challenge all ideas!

