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Kurt Friedrich Gödel (1906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most 
important logicians in history.

Great contributions to
foundations of mathematics.

Incompleteness Theorems.

Completeness Theorem.



John von Neumann (1903-1957)

- Mathematical formulation of 
quantum mechanics

- Founded the field of game theory 
in mathematics.

- Created some of the first 
general-purpose computers.



Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for 
every formula F in first order predicate logic and every natural 
number n, allows one to decide if there is a proof of F of length n 
(length = number of symbols). Let ψ(F,n) be the number of steps the 
machine requires for this and let φ(n) = maxF ψ(F,n). The question 
is how fast φ(n) grows for an optimal machine. One can show that 
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even 
∼ k ⋅ n2), this would have consequences of the greatest importance. 
Namely, it would obviously mean that in spite of the undecidability 
of the Entscheidungsproblem, the mental work of a mathematician 
concerning Yes-or-No questions could be completely replaced by a 
machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it 
makes no sense to think more about the problem. Now it seems to 
me, however, to be completely within the realm of possibility that 
φ(n) grows that slowly.
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Gödel’s letter to von Neumann

Input: A FOL formula F, and m

Output: YES if there is a proof F of length m
              NO otherwise

A computational problem

Clearly this is decidable.

Can do Brute Force Search.
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Gödel’s letter to von Neumann

= the number of steps required for input (F, m)

(a worst-case notion of
   running time)

'(m) = max

F
 (F,m)

 (F,m)

Question: How fast does            for an optimal machine?'(m)

'(m) � k ·mHe claims (a lower bound)

If                            or even '(m) ⇠ k ·m '(m) ⇠ k ·m2

(if we could really beat Brute Force Search)

“this would have consequences of the greatest importance”
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Dealing with summations

Running time analysis:

Dealing with recursion



Dealing with summations

1. Rough bounding

2. Exact computation

3. Induction

4. Telescoping series

5. Comparison with an integral



Dealing with summations

1. Rough bounding
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Dealing with summations

2. Exact computation
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Dealing with summations

2. Exact computation
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Dealing with summations

3. Induction
nX

i=0

3i  C · 3n

Prove by induction on n.



Dealing with summations

4. Telescoping series

nX

i=1

1

i(i+ 1)
=

nX

i=1

✓
1

i
� 1

i+ 1

◆

=

✓
1

1
� 1

2

◆
+

✓
1

2
� 1

3

◆
+

✓
1

3
� 1

4

◆
+ · · ·+

✓
1

n
� 1

n+ 1

◆

= 1� 1

n+ 1



Dealing with summations

5. Comparison with an integral
nX
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Dealing with summations

5. Comparison with an integral
nX
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Dealing with summations

Running time analysis:

Dealing with recursion



Example: merge sort

Sorting a given list/array of elements:

1. Recursively sort right half of the list

2. Recursively sort left half of the list

3. Combine (merge) the two sorted lists.

Merge Sort

Input size = length of the list = n

# of steps not counting the work done by recursive calls:

2T (n/2) +O(n)T (n) 

O(n)



Recursion tree for merge sort

n

n/2 n/2

n/4 n/4 n/4 n/4

Level
0

1

2

… … … …

n

n/2 n/2

n/4 n/4 n/4 n/4

# operations 
per level

n

n

# distinct problems at level j: 
# operations per node at level j: 

2j

c(n/2j)

cn
per level



Recursion tree for merge sort

n

n/2 n/2

n/4 n/4 n/4 n/4

Level
0

1

2

# operations 
per level

… … … …

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n

# levels: 
Total cost:

log2 n

O(n log n)



The Master Theorem

# recursive calls

input size
shrinkage factor

exponent of
“combine step”

Base case:                       for all sufficiently small n.T (n)  C

Recursive relation:

T (n)  a · T (n/b) +O(nd) a � 1, b > 1, d � 0

T (n) =

8
<

:

O(nd
log n) if a = bd

O(nd
) if a < bd

O(nlogb a
) if a > bd



The power of computation/algorithms

(and more exercise with recursion)



Integer Multiplication

Input:  2  n-digit  numbers x and y.

Output:  The product of x and y.

Grade-School Algorithm:

5 6 7 8
1 2 3 4x

2 2 7 1 2
1 7 0 3 4

1 1 3 5 6
5 6 7 8+

7 0 0 6 6 5 2

n rows

Total: O(n2)

�! O(n) operations

�! O(n) operations

�! O(n) operations

�! O(n) operations



Integer Multiplication

You might think: 
Probably this is the best, what else can you really do ?

A good algorithm designer thinks:

How can we do better ? 

Let’s try a different approach and see what happens…



Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x = 10n/2a+ b

y = 10n/2c+ d



Integer Multiplication

1 0 1 1

1 1 0 1

x =

y =

a b

c d

y = 2n/2c+ d

x = 2n/2a+ b

x · y = (2n/2a+ b)(2n/2c+ d)

= 2nac+ 2n/2(ad+ bc) + bd

Why not try recursion then?



Integer Multiplication

1 0 1 1

1 1 0 1

x =

y =

a b

c d

y = 2n/2c+ d

x = 2n/2a+ b

x · y = (2n/2a+ b)(2n/2c+ d)

= 2nac+ 2n/2(ad+ bc) + bd

Recursively compute ac, ad, bc, and bd.  Do the additions.

Base case: 1 digit numbers.

T (n)  4T (n/2) +O(n)



Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2 n/2

n/2 n/2

n/4 n/4 n/4 n/4

n/4 n/4 n/4 n/4

2

# operations 
per level

2n

4n

# distinct problems at level j: 

# operations per node at level j: 

4j

c(n/2j) per level
cn2j

# levels: Total cost:
log2 n

log2 nX

j=0

cn2j 2 O(n2)



Integer Multiplication

1 0 1 1

1 1 0 1

x =

y =

a b

c d

y = 2n/2c+ d

x = 2n/2a+ b

x · y = (2n/2a+ b)(2n/2c+ d)

= 2nac+ 2n/2(ad+ bc) + bd

Hmm, we don’t really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls.



Integer Multiplication

1 0 1 1

1 1 0 1

x =

y =

a b

c d

y = 2n/2c+ d

x = 2n/2a+ b

x · y = (2n/2a+ b)(2n/2c+ d)

= 2nac+ 2n/2(ad+ bc) + bd

(a+ b)(c+ d) = ac+ ad+ bc+ bd

T (n)  3T (n/2) +O(n) Is this better??



Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

# operations 
per level

3n/2

9n/4

# distinct problems at level j: 

# operations per node at level j: c(n/2j)

# levels: Total cost:
log2 n

3j

log2 nX

j=0

cn(3j/2j)

per level
cn(3j/2j)



Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

# operations 
per level

3n/2

9n/4

Total cost:
log2 nX

j=0

cn(3j/2j)

2 O(nlog2 3)Karatsuba Algorithm

 Cn(3log2 n/2log2 n)

= C3log2 n

= Cnlog2 3



Integer Multiplication

You might think: 
Probably this is the best, what else can you really do ?

A good algorithm designer thinks:

How can we do better ? 

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.

T (n)  5T (n/3) +O(n)

T (n) 2 O(nlog3 5)

Can do                                for any T (n) 2 O(n1+✏) ✏ > 0.



Integer Multiplication

Fastest known: n(log n)2O(log

⇤ n) Martin Fürer
(2007)



Matrix Multiplication

x =X Y Zn

n

Input:  2  n x n  matrices X and Y.

Output:  The product of X and Y.

(Assume entries are objects we can multiply and add.)

Note: input size is            .O(n2)



Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X)  (j’th column of Y).
nX

k=1

        =        X[i,k] Y[k,j]



Matrix Multiplication

a b

c d

e f

g h
x =

ae+bg af+bh

ce+dg cf+dh



Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X)  (j’th column of Y).
nX

k=1

        =        X[i,k] Y[k,j]

Algorithm 1: ⇥(n3)



Matrix Multiplication

X Y= =

A B

C D

E F

G H

Z =
AE+BG AF+BH

CE+DG CF+DH

Algorithm 2: recursively compute 8 products
                            + do the additions. ⇥(n3)



Matrix Multiplication

Can reduce the number of products to 7.

Q1 = (A+D)(E+G)
Q2 = (C+D)E
Q3 = A(F-H)
Q4 = D(G-E)
Q5 = (A+B)H
Q6 = (C-A)(E+F)
Q7 = (B-D)(G+H)

Z =
AE+BG AF+BH

CE+DG CF+DH

AE+BG = Q1+Q4-Q5+Q7
AF+BH = Q3+Q5
CE+DG = Q2+Q4
CF+DH = Q1+Q3-Q2+Q6



Matrix Multiplication

T (n) = 7 · T (n/2) +O(n2)Running Time:

= O(n2.81)

T (n) = O(nlog2 7)=)



Matrix Multiplication

Volker Strassen

Strassen’s Algorithm (1969)

Together with Schönhage (in 1971)
did n-bit integer multiplication
in time O(n log n log log n)

Arnold Schönhage



Matrix Multiplication

Improvements since 1969

No improvement for 20 years!

1978:                    by PanO(n2.796)

1979:                    by Bini, Capovani, Romani, LottiO(n2.78)

1981:                    by SchönhageO(n2.522)

1981:                    by RomaniO(n2.517)

1981:                    by Coppersmith, WinogradO(n2.496)

1986:                    by StrassenO(n2.479)

1990:                    by Coppersmith, WinogradO(n2.376)



Matrix Multiplication

No improvement for 20 years!

2010:                    by Andrew Stothers (PhD thesis)O(n2.374)

2011:                    by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)



Enormous Open Problem

Is there an             time algorithm
for matrix multiplication ??? 

O(n2)



Some other interesting problems

Theorem Proving
Given a mathematical statement and and integer k,
is there a proof in ZFC set theory with at most k 
symbols?

Testing Primality

Given an integer k, is k a prime number?

Factoring

Given an integer k, find its prime factors.



Some other interesting problems

Sudoku (arbitrary dimension)

Satisfiability (SAT)

Given a Boolean formula, is it satisfiable?

(x1 _ x2) ^ (x3 _ ¬x2) ^ ¬x1



Polynomial time and the class P



Complexity classes

DTIME(T (n)) = {L : L is decided by an O(T (n)) time algorithm.}

P =
[

k2N
DTIME(nk)

EXP =
[

k2N
DTIME(2n

k

)

P ✓ EXP



What is efficient in theory and in practice ?

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?



What is efficient in theory and in practice ?

In theory:

-  P is not meant to mean “efficient in practice”

-  It means “You have done something extraordinarily 
better than brute force (exhaustive) search.”

In P

Not in  P

Efficient.

Not efficient.

-  Robust to notion of what is an elementary step,
   what model we use, reasonable encoding of input,  
   implementation details.



What is efficient in theory and in practice ?

In theory:
In P

Not in  P

Efficient.

Not efficient.

-  Being in P is a fundamental property of a problem,
rather than a property of how we solve the problem.

- P is about mathematical insight into a problem’s 
structure.

-  Whether, say “Theorem Proving” is in P or not is a 
mathematical question about the nature of the problem.



What is efficient in theory and in practice ?

In theory:
In P

Not in  P

Efficient.

Not efficient.

-  If you show, say Theorem Proving Problem, has 
running time                it will be the best result in CS 
history. 

O(n100)

-  Nice closure property:  Plug in a poly-time alg. into 
another poly-time alg. —> poly-time

-  Wouldn’t make sense to cut it off at some specific 
exponent.



What is efficient in theory and in practice ?

In theory:
In P

Not in  P

Efficient.

Not efficient.

-  Plus, big exponents don’t really arise.

-  Summary:  Being in P vs not being in P
   is a qualitative difference, not a quantitative one.

-  If it does arise, usually can be brought down.



Efficiency limits on computation



Is every decidable problem in P ?

The field of polynomial time algorithms is very rich!

Polynomial time algorithms can do really amazing things.

Maybe they can solve every decidable problem…

Well, they can’t!

This can be proved using a diagonalization argument.



Recall how we showed HALT is undecidable

HALT = {hM,xi : M halts on input x.}

Suppose                decides             .MHALT HALT

Then we can define                   :MTURING

MTURING(hMi) :
run MHALT(hM,Mi) and “flip the answer”

if MHALT(hM,Mi) = YES
run for infinity

if MHALT(hM,Mi) = NO

halt

Contradiction when you look at MTURING(hMTURINGi)



Showing a limit of efficient computation

We can use a similar strategy to show that there is a 
decidable language that takes, say,  at lest      time.n2

HWTB = HALT WITH TIME BOUND

HWTB = {hMi : M(hMi) takes at most n3 steps.}

Claim 1:                 is decidable.HWTB

Claim 2:                 cannot be decided in        steps.n2HWTB

Suppose it can be decided in       steps. n2

Let                be a decider with this property.MHWTB

We’ll describe                   that uses               :MTURING MHWTB



Showing a limit of efficient computation

HWTB = {hMi : M(hMi) takes at most n3 steps.}

We’ll describe                   that uses               :MTURING MHWTB

MTURING(hMi) :
run MHWTB(hMi) and “flip the answer”

if MHWTB(hMi) = YES

run for infinity

if MHWTB(hMi) = NO

halt

What happens when we run                                      ? MTURING(hMTURINGi)



Showing a limit of efficient computation
MTURING(hMi) :

run MHWTB(hMi) and “flip the answer”
if MHWTB(hMi) = YES

run for infinity

if MHWTB(hMi) = NO
halt

What happens when we run                                      ? MTURING(hMTURINGi)
MHWTB(hMTURINGi) = YESIf

But it goes into an infinite loop.
                                       should stop in      steps.MTURING(hMTURINGi) n3

If MHWTB(hMTURINGi) = NO

MTURING(hMTURINGi)                                      should take more than    steps.      n3

But it takes             steps.n2 + c



Showing a limit of efficient computation

So our assumption that there was a decider for
that used       steps was false.

HWTB
n2

Nothing very special about      . 
Could also consider, say, exponential running time.

n2



Showing a limit of efficient computation

If you are a bit more careful about it, you can prove a 
much stronger statement:

Time Hierarchy Theorem:

Let          be a time-constructible function, and 

Then there is a problem which cannot be decided 
in time         ,   but can be decided in time              .            

✏ > 0.T (n)

T (n)1+✏T (n)

DTIME(T (n)) ( DTIME(T (n)1+✏)i.e.,



Can you cheat exponential time?



How could you try to cheat exponential time?

Make every step exponentially fast.

Time travel to the future.


