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Kurt Friedrich Godel (1906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most
important logicians in history.

Great contributions to
foundations of mathematics.

Incompleteness Theorems.

Completeness Theorem.



John von Neumann (1903-1957)
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Godel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let y(F,n) be the number of steps the
machine requires for this and let ¢(n) = maxF yp(F,n). The question
is how fast ¢p(n) grows for an optimal machine. One can show that
¢(n) = k - n. If there really were a machine with ¢(n) ~k - n (or even
~ k - n?), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
¢(n) grows that slowly.
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Godel’s letter to von Neumann

A computational problem
Input: A FOL formula F and m

Output: YES if there is a proof F of length m
NO otherwise

Clearly this is decidable.

Can do Brute Force Search.
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Godel’s letter to von Neumann
U (F, m) = the number of steps required for input (F m)

o(m) =maxV(F,m)  (a worst-case notion of
a running time)

Question: How fast does @(m) for an optimal machine?
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Godel’s letter to von Neumann
U (F, m) = the number of steps required for input (F m)

o(m) =maxV(F,m)  (a worst-case notion of
a running time)

Question: How fast does @(m) for an optimal machine?

He claims ¢(m) > k-m  (a lower bound)

if o(m)~k-m oreven ¢(m)~k-m?

(if we could really beat Brute Force Search)

“this would have consequences of the greatest importance”
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Running time analysis:
Dealing with summations

Dealing with recursion



Dealing with summations

|. Rough bounding

2. Exact computation
3. Induction

4. Telescoping series

5. Comparison with an integral



Dealing with summations

|. Rough bounding
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Dealing with summations

2. Exact computation
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Dealing with summations

2. Exact computation
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Dealing with summations

3. Induction

n

Prove by induction on n.



Dealing with summations

4. Telescoping series
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Dealing with summations

5. Comparison with an integral
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Dealing with summations

5. Comparison with an integral
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Running time analysis:
Dealing with summations

Dealing with recursion



Example: merge sort

Sorting a given list/array of elements:
Merge Sort

|. Recursively sort right half of the list

2. Recursively sort left half of the list

3. Combine (merge) the two sorted lists.

Input size = length of the list = n
T(n) < 2T(n/2) + O(n)

# of steps not counting the work done by recursive calls:

O(n)



Recursion tree for merge sort

Level n H# operations
0 per level

| — N
n/4

2 — N

# distinct problems at level j: 2 cn

# operations per node at level j: ¢(n/27) per level



Recursion tree for merge sort

Level n H# operations
0 per level

# levels: log, n
Total cost: O(nlogn)



The Master Theorem

Base case: 7'(n) < C' for all sufficiently small n.

Recursive relation:

T(n) < a-T(n/b) + O(n*) a>1,b6>1,d=>0

!

# recursive calls

v
Input size
shrinkage factor
O(n%logn) if a = b T
B d , d exponent o
T(n) — O(n ) ifa<b “combine step”
O(n'g @) if g > b?



The power of computation/algorithms

(and more exercise with recursion)



Integer Multiplication

Input: 2 n-digit numbers x and .

Output: The product of x and .

Grade-School Algorithm:

5678
x 1234
22712 —  O(n) operations
1 TOWS 1 7034 —  O(n) operations
| 1356 —  O(n) operations
+ 5678 —  O(n) operations
7006652

Total: O(n?)



Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer thinks:

How can we do better ?

Let’s try a different approach and see what happens...



Integer Multiplication

:5 6)(7 83 r = 10"2a 4+

y = 10™2%c+d




Integer Multiplication

x= (1011 r = 2"2a+4
i ) y = 2M2c+d

r-y = (2"%a 4 b)(2"%c + d)
= 2"ac + 2™%(ad + be) + bd

Why not try recursion then?



Integer Multiplication

X = :| ()JU |: r = 2"%q+40
! ) y = 2M2c+d

r-y = (2"%a 4 b)(2"%c + d)
= 2"ac + 2™%(ad + be) + bd

Recursively compute ac, ad, bc,and bd. Do the additions.

Base case: | digit numbers.

T(n) < 4T(n/2)+ O(n)



Integer Multiplication

Level n H# operations
0 per level
n/2 ,~nl2 n/2x4 n/2
| (n/2)(n/2) —> 2n

n/4
2 —> 4n
# distinct problems at level j: 4 cn2’
# operations per node at level j; ¢(n/27) per level

logs, 1

# levels: log,n Total cost: Z n9i € O(n2)
=0



Integer Multiplication

a b
X = :| ()JU |: r = 2"%q+40
y = :| |J(o |: y = 2M2c4+d
c d
r-y = (2"%a 4 b)(2"%c + d)
= 2"ac 4 22 (ad + bc) + bd

Hmm, we don’t really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls.
\_ J




Integer Multiplication

X = :| ()JU |: r = 2"%q+40
- N g _ 2n/20_|_d

r-y = (2"%a 4 b)(2"%c + d)
= 2"ac 4 22 (ad + bc) + bd

(a+b)(c+d) =ac +[ad + bcj+ bd

T(n) < 3T(n/2)+ O(n) Is this better??



Integer Multiplication

Level n H# operations
0 per level
n/2
I n/2 — 3n/2
p) — 9n/4
# distinct problems at level j: 3’ cn (37 /27)
# operations per node at level j:1 c(n/2’) per level
0go M

# levels: logy Total cost: Z cn(3’/27)
j=0



Integer Multiplication

Level n H# operations
0 per level
n/2
I n/2 — 3n/2
p) — 9n/4
logy N
Total cost: Z en(37/27) < Cn(3'°827 /9log2 )
7=0 _ CSIOg? n

Karatsuba Algorithm — Onlog23 ¢ O(n'o823)



Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer thinks:

How can we do better ?

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.

T(n) <5T(n/3)+ O(n)
T(n) € O(n's?)

Cando T(n) € O(n'*™®) forany ¢ > 0.



Integer Multiplication

Fastest known: n(logn)29Ucs™ ) Martin Firer
(2007)



Matrix Multiplication

Input: 2 n x n matrices X andY.

Output: The product of X andY.

(Assume entries are objects we can multiply and add.)

Note: input size is O(n?).



Matrix Multiplication
J J

X X Y

iH i M

1
N

/[1,j]] = (i"th row of X) - (j’th column of Y)

n

= ) X[i,k] YIk,j]

k=1



Matrix Multiplication

e f aetbg af+bh
g h cetdg cf+dh




Matrix Multiplication
J J

X X Y

iH i M

1
N

/[1,j]] = (i"th row of X) - (j’th column of Y)

n

= ) X[i,k] YIk,j]

k=1

Algorithm 1: O(n°)



Matrix Multiplication

CE+DG:CF+DH

Algorithm 2: recursively compute 8 products
+ do the additions. O(n°)



Matrix Multiplication

AE+BG: AF+BH

CE+DG:CF+DH

Can reduce the number of products to 7.

QI = (A+D)(E+G)
Q2 = (C+D)E

Q3 = A(F-H)

Q4 = D(G-E)

Q5 = (A+B)H

Q6 = (C-A)(E+F)
Q7 = (B-D)(G+H)

AE+BG = Q[+Q4-Q5+Q7
AF+BH = Q3+Q5
CE+DG = Q2+Q4
CF+DH = Q1+Q3-Q2+Q6




Matrix Multiplication

Running Time: T(n) =7-T(n/2) + O(n*)

—  T(n)=0(n"%")

_ O(n2‘81)




Matrix Multiplication

Strassen’s Algorithm (1969)

Volker Strassen

Together with Schonhage (in 1971)
did n-bit integer multiplication
in time O(nlognloglogn)

4 |
Arnold Schonhage



Matrix Multiplication

Improvements since 1969

1978: O(n*"™°) by Pan

oy Bini, Capovani, Romani, Lotti
) by Schonhage
) by Romani

1981: O(n**?%) by Coppersmith, Winograd
)
)

oy Strassen

by Coppersmith,Winograd

No improvement for 20 years!



Matrix Multiplication

No improvement for 20 years!

2010: O(n*>™) by Andrew Stothers (PhD thesis)




Enormous Open Problem

Is there an O(n?) time algorithm
for matrix multiplication ???



Some other interesting problems

Theorem Proving

Given a mathematical statement and and integer k,
is there a proof in ZFC set theory with at most k
symbols!?

Testing Primality

Given an integer k, is k a prime number?

Factoring

Given an integer k, find its prime factors.



Some other interesting problems

Satisfiability (SAT)
Given a Boolean formula, is it satisfiable?

5131\/.562 A 33'3\/ﬁ5132 /\_lCEl

Sudoku (arbitrary dimension)
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Polynomial time and the class P



Complexity classes

DTIME(T(n)) = {L : L is decided by an O(T'(n)) time algorithm.}

P = | J DTIME(n")
keN

EXP = | ] DTIME(2"")
keN

P C EXP



What is efficient in theory and in practice !

In practice:
n) Awesome! Like really awesome!

O(nlogn)  Great!

Kind of efficient.

Would not call it efficient.

(
(
(n”)

O(n°) Barely efficient. (227)
(n”)
( Definitely not efficient!
(

n ') WTF?



What is efficient in theory and in practice !

In theory:
In P Efficient.
Notin P Not efficient.

- P is not meant to mean “efficient in practice”

- It means “You have done something extraordinarily
better than brute force (exhaustive) search.”

- Robust to notion of what is an elementary step,
what model we use, reasonable encoding of input,
implementation details.



What is efficient in theory and in practice !

In theory:
In P Efficient.
Notin P Not efficient.

- Being in P is a fundamental property of a problem,
rather than a property of how we solve the problem.

- P is about mathematical insight into a problem’s
structure.

- Whether, say “Theorem Proving” is in P or not is a
mathematical question about the nature of the problem.



What is efficient in theory and in practice !

In theory:
In P Efficient.
Notin P Not efficient.

- If you show, say Theorem Proving Problem, has
running time O(n'") it will be the best result in CS

history.

- Nice closure property: Plug in a poly-time alg. into
another poly-time alg. —> poly-time

- Wouldn’t make sense to cut it off at some specific
exponent.



What is efficient in theory and in practice !

In theory:
In P Efficient.
Notin P Not efficient.

- Plus, big exponents don’t really arise.

- If it does arise, usually can be brought down.

- Summary: Being in P vs not being in P
is a qualitative difference, not a quantitative one.



Efficiency limits on computation



Is every decidable problem in P ?

The field of polynomial time algorithms is very rich!

Polynomial time algorithms can do really amazing things.

Maybe they can solve every decidable problem...

Well, they can’t!

This can be proved using a diagonalization argument.



Recall how we showed HALT is undecidable

HALT = {(M, x) : M halts on input x.}
Suppose Mpart decides HALT.

Then we can define MrTuriNnG :

Mruring((M))
run Myarr((M,M)) and “flip the answer”
if Mygarr((M, M)) = YES
run for infinity
if Mgarr({(M,M)) = NO
halt

Contradiction when you look at Mryring ({(MTurIiNG))




Showing a limit of

efficient computation

We can use a similar strategy to show that there is a

decidable language that ta

Kes, say, at lest n° time.

HWTB = HALT WITH TIME BOUND
HWTB = {(M) : M((M)) takes at most n° steps.}

Claim |I: HW'TB is decidable.

Claim 2: HWTB cannot be decided in n? steps.

Suppose it can be decide

din n? steps.

Let MuwTB be a decider with this property.

We'll describe Mrugrin

o that uses MuywTB :



Showing a limit of efficient computation

HWTB = {(M) : M({M)) takes at most n° steps.}

We'll describe Mryuring that uses MywTB :

Mrurine ((M)) :
run Mgwrs((M)) and “flip the answer”

if Mywrs((M)) =YES
run for infinity

if Magwrs({(M)) = NO
halt

What happens when we run Mryrinag ((MTuring))?



Showing a limit of efficient computation

Mruring((M)) :
run Mywre((M)) and “flip the answer”

if Mywrs((M)) =YES
run for infinity

if Mywrs((M)) =NO
halt

What happens when we run Mryring ((MTuring))?

If Muwre((Mruring)) = YES
MTURING(<MTURING>) should stop IN TLS steps.

But it goes into an infinite loop.

If Muwrs({(Mruring)) = NO

Mruring ({(Mruring)) should take more than n’steps.
But it takes n® + c steps.



Showing a limit of efficient computation

So our assumption that there was a decider for HW1B
that used n” steps was false.

Nothing very special about n°.

Could also consider, say, exponential running time.



Showing a limit of efficient computation

If you are a bit more careful about it, you can prove a
much stronger statement:

Time Hierarchy Theorem:

Let T'(n) be a time-constructible function,and € > 0.

Then there is a problem which cannot be decided
in time 7'(n), but can be decided in time T'(n)' €.

l.e.,

DTIM.

.
V)

(T(n)) C DTIM

5(T'(n)' ™)



Can you cheat exponential time?



How could you try to cheat exponential time!?

Make every step exponentially fast.

Time travel to the future.



