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Space Complexity



How should we define space complexity?

Should the input count?



Definition

A TM has space complexity          if for every input x,
it uses only             cells of the tape.

S(·)
S(|x|)

For 1-tape TM,                  if the machine has to read
the whole input.

S(n) � n

So we actually consider a 2-tape TM:

- Tape 1 contains the input and is read-only

- Tape 2 is called the work tape, it is readable and writable.

The space complexity of the machine is defined with 
respect to the number of work tape cells it uses.



Example

L = {0k1k : k � 0}

spaceO(n)

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Repeat while both 0s and 1s remain on the tape:

- Scan the tape, cross off a single 0 and a single 1.

- If 0s remain but no 1s remain  or 
     1s remain but no 0s remain     reject

- Else  accept

(will need to copy the input to the work tape)



Example

L = {0k1k : k � 0}

spaceO(log n)

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Scan the input and count the number of 0s and 1s.
- If the counts are not the same reject
- Else  accept



Example

L = {0k1k : k � 0}

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True O(log n) space



What can a log-space machine do?

Keep a pointer to a constant number of positions in the 
input.

Count up to poly(n).

Keep logarithmic number of boolean variables.

log2 n
k
= k log2 n



Reachability problem

s

t

This problem is decidable using                space.O(log n)

Omer Reingold (2004):

Input:  A set of “cities”,  a set of “roads” between cities,
          and two specific cities s and t.

Output:  Yes if we can reach t from s.  No otherwise.

A “graph” with
5 nodes/vertices

and 6 edges.

(imagine there are millions of vertices)



Example

Satisfiability (SAT)

Given a Boolean formula, is it satisfiable?

(x1 _ x2) ^ (x3 _ ¬x2) ^ ¬x1

9x19x2 . . . 9xn '(x1, x2, . . . , xn)

QSAT (TQBF)

Given a quantified Boolean formula, is it true?

Q1x1Q2x2 . . . Qnxn '(x1, x2, . . . , xn)

(Each         is      or     .      is allowed to have constants.)Qi 9 8 '



Example

QSAT can be decided using polynomial space.

size of     :' m

size of input: O(n+m)

Q1x1Q2x2 . . . Qnxn '(x1, x2, . . . , xn) =

A( ) :

Let              be     with       dropped,
and all occurrences of       is replaced with    .

 |x1=b

 Q1

x1 b

if n = 0: ... just do it

if Q1 = 9: output (A( |x1=0) or A( |x1=1))

if Q1 = 8: output (A( |x1=0) and A( |x1=1))

O(m) space



Example

A( ) :

if n = 0: ... just do it

if Q1 = 9: output (A( |x1=0) or A( |x1=1))

if Q1 = 8: output (A( |x1=0) and A( |x1=1))

O(m) space

Let               = space used by algorithm A.S(n,m)

Observation: recursive calls                   and
can use the same space.   

A( |x1=0) A( |x1=1)

S(n,m) = O(n ·m+ n2)

(at most quadratic in the input length)

S(n,m) = S(n� 1,m) +O(n+m)



Recall:  time complexity classes

DTIME(T (n)) = {L : L is decided by an O(T (n)) time algorithm.}

P =
[

k2N
DTIME(nk)

EXP =
[

k2N
DTIME(2n

k

)

EXP

P

P ( EXP

(Time hierarchy theorem)



Space complexity classes

DSPACE(S(n)) = {L : L is decided by an O(S(n)) space algorithm.}

PSPACE =
[

k2N
DSPACE(nk)

L = DSPACE(log n)

L

PSPACE

L ✓ PSPACE

L = PSPACE ???



Hierarchy Theorems

Time Hierarchy Theorem:

Let          be a time-constructible function, and 

Then there is a problem which cannot be decided 
in time         ,   but can be decided in time              .            

✏ > 0.T (n)

T (n)1+✏T (n)

DTIME(T (n)) ( DTIME(T (n)1+✏)i.e.,

Space Hierarchy Theorem:

Let          be a space-constructible function, and 

Then there is a problem which cannot be decided 
in space         ,  but can be decided in space              .            

✏ > 0.

S(n)1+✏

S(n)

S(n)

DSPACE(S(n)) ( DSPACE(S(n)1+✏)i.e.,



Hierarchy Theorems

DSPACE(S(n)) ( DSPACE(S(n)1+✏)i.e.,

Corollary: L ( PSPACE

L

PSPACE

Space Hierarchy Theorem:

Let          be a space-constructible function, and 

Then there is a problem which cannot be decided 
in space         ,  but can be decided in space              .            

✏ > 0.

S(n)1+✏

S(n)

S(n)



Relationship between space and time

EXP

P
L

PSPACE



Relationship between space and time

EXP

P
L

PSPACE

???



Relationship between space and time

Theorem:
If a TM decides a language using          space,
where                        ,  
then it decides the language using               time.

S(·)
S(n) � log2 n

2O(S(n))

Proof:
Recall a configuration of a TM is a string

uqv u, v 2 �⇤, q 2 Q

This is a snapshot of the TM’s computation.

The information encoded in a configuration:
- current state
- the position of the tape head
- contents of the tape

(work and input)
(work)



Relationship between space and time

Proof (continued):
The information encoded in a configuration:

- current state
- the position of the tape head
- contents of the tape

(work and input)
(work)

If the TM takes t steps on a certain input, 
there is a sequence of configurations: c1, c2, . . . , ct

Observation1: ci 6= cj , for i 6= j

(otherwise the TM would be in an infinite loop.)

Observation2:          # possible configurationst 



Relationship between space and time

Proof (continued):

Number of possible configurations is:

|Q| · n · S(n) · |�|S(n)

= C · 2log2 n+log2 S(n)+O(S(n))

= 2O(S(n))

Observation1: ci 6= cj , for i 6= j

Observation2:          # possible configurationst 

So: t  2O(S(n))

= C · 2log2 n · 2log2 S(n) · 2(log2 |�|)S(n)



Relationship between space and time

Theorem:
If a TM decides a language using          space,
where                        ,  
then it decides the language using               time.

S(·)
S(n) � log2 n

2O(S(n))

Corollary 1: L ✓ P

Corollary 2: PSPACE ✓ EXP

2c log2 n = nc(                        )



Relationship between space and time

EXP

P

L

PSPACE

L ✓ P ✓ PSPACE ✓ EXP

L ( PSPACE

L ( P P ( PSPACE

=)

or

P ( EXP

P ( PSPACE PSPACE ( EXP

=)

or

Ae.g., to show                      ,  you need a language     :

but

P ( PSPACE

A 2 PSPACE A 62 P



Circuit Complexity



Recall the definition



Recall the definition

A collection of gates and inputs connected by wires.

3 types of gates:

- binary AND gate

- binary OR gate

- unary NOT gate

Computes a function f : {0, 1}n ! {0, 1}
(or decides a language                      )Ln ✓ {0, 1}n

Important:  A circuit can’t handle all input lengths.
Need a circuit for each input length.



Circuit family

A circuit family     is a collection of circuits C (C0, C1, C2, . . .)

where each        takes n input variables.Cn

Let                         be the language decided by       . Ln ✓ {0, 1}n Cn

Then                       is the language decided by     . L =
[

n2N
Ln C



Circuits vs TMs

Stephen Kleene

An algorithm is a finite answer
to infinite number of questions.

A decider TM computes a function f : {0, 1}⇤ ! {0, 1}

A TM is has a constant size description.



Circuits vs TMs

Anil Ada

A circuit family is an infinite answer
to infinite number of questions.

Perhaps not a very realistic model of computation.

It is still a very useful model to study!

Every function is computable!

(it is a “non-uniform” model)



Circuit size

The size of a circuit is the total number of gates 
(counting the input variables as gates too) in the circuit.

The size of a circuit family      is a function        
such that          is the size of       . 

C s(·)
s(n) Cn

The circuit complexity of a language is the size of the 
minimal circuit family that decides the language.

(intrinsic complexity with respect to circuit size)

                           if there is a circuit family of sizeL 2 SIZE(s(n))
                 that decides     . LO(s(n))



Maximum circuit size for a function

Theorem:
For every language    ,  A A 2 SIZE(2n).

Proof:
Let                                      correspond to     . fA : {0, 1}n ! {0, 1} A

Observation:

fA(x1, x2, . . . , xn) = (x1 ^ fA(1, x2, . . . , xn))

(¬x1 ^ fA(0, x2, . . . , xn))

_



Maximum size for a function
Proof (continued):

fA(1, x2, . . . , xn) fA(0, x2, . . . , xn)

x2 x3 xnx1

^
_

¬
^

…

s(n)  2s(n� 1) + 5 s(1)  3

=) s(n) = O(2n)



Functions with exponential complexity

Theorem:
There is a language      whose circuit complexity is
at least            .

L
2n/4n

Proof:
Want to show: there is a function f : {0, 1}n ! {0, 1}
that cannot be computed by a circuit of size                . 2n/4n<

Observation:  # possible functions is 22
n

Claim1:  # circuits of size s is  24s log s

Claim2:  For                   ,s  2n/4n 24s log s < 22
n

Then what we wanted to show follows immediately.



Functions with exponential complexity
Proof (continued):

Claim 2 is easy to verify.   Proof of Claim 1:
For each circuit of size s, 
we create a binary string of length  4s log s

This mapping will be injective, so Claim 1 will follow.

For each gate in the circuit, write down:
- type of the gate
- from which gates the inputs are coming from

(2 log s  bits) Total:  s(2 + 2 log s) bits

Claim1:  # circuits of size s is  24s log s

Claim2:  For                   ,s  2n/4n 24s log s < 22
n

(2 bits)

Number the gates: 1, 2, 3, 4, …, s



Remarks

In fact, it is easy to show that most functions require
exponential size circuits.

A non-constructive argument.

That was due to Claude Shannon (1949).

Claude Shannon
(1916-2001)

Father of Information Theory.



Circuit complexity vs time complexity
Theorem:

If                                 ,  then                              . A 2 DTIME(T (n)) A 2 SIZE(T (n)2)

i.e. DTIME(T (n)) ✓ SIZE(T (n)2)

Corollary:
If      cannot be computed by polynomial size circuits,
 then           . 

A
A 62 P

So to show                       ,  find a language in
that cannot be computed by polynomial size circuits.  

P ( PSPACE PSPACE

After 60 years of research, 
best lower bound for an explicit function: 5n� peanuts

Current state of affairs:



Advantages of working with circuits

A clean, simple mathematical definition.

Easy to create a hierarchy of problems.

- can restrict the depth (constant, log n, log^2 n, …)
- can allow other gates when the depth is restricted.
- can study monotone circuits.



Summary of  
Introduction to Computational Complexity



Summary

Unlike computability, computational complexity depends 
on the computational model.

Definition of time complexity of an algorithm.

The CS way of comparing functions.
O(·),⌦(·),⇥(·)

How you represent the input matters.
If the input is a number, imagine it has millions of digits.



Summary

Algorithms can do tricky things!

Definition of the famous complexity class    . 

Not all decidable problems can be efficiently decided.

Always ask “Can we do better?”

P



Summary

Space complexity.

Circuit complexity.

L ✓ P ✓ PSPACE ✓ EXP

- A nice and clean computational model.
- Related to time complexity.

We don’t know how to prove lower bounds…


