
February 10th, 2015

15-251
Great Theoretical Ideas in

Computer Science
Introduction to Computational Complexity III:

Space Complexity and Circuit Complexity

Today’s Menu

Space complexity

Circuit complexity

Space Complexity

How should we define space complexity?

Should the input count?

Definition

A TM has space complexity if for every input x,
it uses only cells of the tape.

S(·)
S(|x|)

For 1-tape TM, if the machine has to read
the whole input.

S(n) � n

So we actually consider a 2-tape TM:

- Tape 1 contains the input and is read-only

- Tape 2 is called the work tape, it is readable and writable.

The space complexity of the machine is defined with
respect to the number of work tape cells it uses.

Example

L = {0k1k : k � 0}

spaceO(n)

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Repeat while both 0s and 1s remain on the tape:

- Scan the tape, cross off a single 0 and a single 1.

- If 0s remain but no 1s remain or
 1s remain but no 0s remain reject

- Else accept

(will need to copy the input to the work tape)

Example

L = {0k1k : k � 0}

spaceO(log n)

On input string w:
- Scan the input and reject if a 0 is found to the right of a 1.
- Scan the input and count the number of 0s and 1s.
- If the counts are not the same reject
- Else accept

Example

L = {0k1k : k � 0}

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):
if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True O(log n) space

What can a log-space machine do?

Keep a pointer to a constant number of positions in the
input.

Count up to poly(n).

Keep logarithmic number of boolean variables.

log2 n
k
= k log2 n

Reachability problem

s

t

This problem is decidable using space.O(log n)

Omer Reingold (2004):

Input: A set of “cities”, a set of “roads” between cities,
 and two specific cities s and t.

Output: Yes if we can reach t from s. No otherwise.

A “graph” with
5 nodes/vertices

and 6 edges.

(imagine there are millions of vertices)

Example

Satisfiability (SAT)

Given a Boolean formula, is it satisfiable?

(x1 _ x2) ^ (x3 _ ¬x2) ^ ¬x1

9x19x2 . . . 9xn '(x1, x2, . . . , xn)

QSAT (TQBF)

Given a quantified Boolean formula, is it true?

Q1x1Q2x2 . . . Qnxn '(x1, x2, . . . , xn)

(Each is or . is allowed to have constants.)Qi 9 8 '

Example

QSAT can be decided using polynomial space.

size of :' m

size of input: O(n+m)

Q1x1Q2x2 . . . Qnxn '(x1, x2, . . . , xn) =

A() :

Let be with dropped,
and all occurrences of is replaced with .

 |x1=b

 Q1

x1 b

if n = 0: ... just do it

if Q1 = 9: output (A(|x1=0) or A(|x1=1))

if Q1 = 8: output (A(|x1=0) and A(|x1=1))

O(m) space

Example

A() :

if n = 0: ... just do it

if Q1 = 9: output (A(|x1=0) or A(|x1=1))

if Q1 = 8: output (A(|x1=0) and A(|x1=1))

O(m) space

Let = space used by algorithm A.S(n,m)

Observation: recursive calls and
can use the same space.

A(|x1=0) A(|x1=1)

S(n,m) = O(n ·m+ n2)

(at most quadratic in the input length)

S(n,m) = S(n� 1,m) +O(n+m)

Recall: time complexity classes

DTIME(T (n)) = {L : L is decided by an O(T (n)) time algorithm.}

P =
[

k2N
DTIME(nk)

EXP =
[

k2N
DTIME(2n

k

)

EXP

P

P (EXP

(Time hierarchy theorem)

Space complexity classes

DSPACE(S(n)) = {L : L is decided by an O(S(n)) space algorithm.}

PSPACE =
[

k2N
DSPACE(nk)

L = DSPACE(log n)

L

PSPACE

L ✓ PSPACE

L = PSPACE ???

Hierarchy Theorems

Time Hierarchy Theorem:

Let be a time-constructible function, and

Then there is a problem which cannot be decided
in time , but can be decided in time .

✏ > 0.T (n)

T (n)1+✏T (n)

DTIME(T (n)) (DTIME(T (n)1+✏)i.e.,

Space Hierarchy Theorem:

Let be a space-constructible function, and

Then there is a problem which cannot be decided
in space , but can be decided in space .

✏ > 0.

S(n)1+✏

S(n)

S(n)

DSPACE(S(n)) (DSPACE(S(n)1+✏)i.e.,

Hierarchy Theorems

DSPACE(S(n)) (DSPACE(S(n)1+✏)i.e.,

Corollary: L (PSPACE

L

PSPACE

Space Hierarchy Theorem:

Let be a space-constructible function, and

Then there is a problem which cannot be decided
in space , but can be decided in space .

✏ > 0.

S(n)1+✏

S(n)

S(n)

Relationship between space and time

EXP

P
L

PSPACE

Relationship between space and time

EXP

P
L

PSPACE

???

Relationship between space and time

Theorem:
If a TM decides a language using space,
where ,
then it decides the language using time.

S(·)
S(n) � log2 n

2O(S(n))

Proof:
Recall a configuration of a TM is a string

uqv u, v 2 �⇤, q 2 Q

This is a snapshot of the TM’s computation.

The information encoded in a configuration:
- current state
- the position of the tape head
- contents of the tape

(work and input)
(work)

Relationship between space and time

Proof (continued):
The information encoded in a configuration:

- current state
- the position of the tape head
- contents of the tape

(work and input)
(work)

If the TM takes t steps on a certain input,
there is a sequence of configurations: c1, c2, . . . , ct

Observation1: ci 6= cj , for i 6= j

(otherwise the TM would be in an infinite loop.)

Observation2: # possible configurationst

Relationship between space and time

Proof (continued):

Number of possible configurations is:

|Q| · n · S(n) · |�|S(n)

= C · 2log2 n+log2 S(n)+O(S(n))

= 2O(S(n))

Observation1: ci 6= cj , for i 6= j

Observation2: # possible configurationst

So: t 2O(S(n))

= C · 2log2 n · 2log2 S(n) · 2(log2 |�|)S(n)

Relationship between space and time

Theorem:
If a TM decides a language using space,
where ,
then it decides the language using time.

S(·)
S(n) � log2 n

2O(S(n))

Corollary 1: L ✓ P

Corollary 2: PSPACE ✓ EXP

2c log2 n = nc()

Relationship between space and time

EXP

P

L

PSPACE

L ✓ P ✓ PSPACE ✓ EXP

L (PSPACE

L (P P (PSPACE

=)

or

P (EXP

P (PSPACE PSPACE (EXP

=)

or

Ae.g., to show , you need a language :

but

P (PSPACE

A 2 PSPACE A 62 P

Circuit Complexity

Recall the definition

Recall the definition

A collection of gates and inputs connected by wires.

3 types of gates:

- binary AND gate

- binary OR gate

- unary NOT gate

Computes a function f : {0, 1}n ! {0, 1}
(or decides a language)Ln ✓ {0, 1}n

Important: A circuit can’t handle all input lengths.
Need a circuit for each input length.

Circuit family

A circuit family is a collection of circuits C (C0, C1, C2, . . .)

where each takes n input variables.Cn

Let be the language decided by . Ln ✓ {0, 1}n Cn

Then is the language decided by . L =
[

n2N
Ln C

Circuits vs TMs

Stephen Kleene

An algorithm is a finite answer
to infinite number of questions.

A decider TM computes a function f : {0, 1}⇤ ! {0, 1}

A TM is has a constant size description.

Circuits vs TMs

Anil Ada

A circuit family is an infinite answer
to infinite number of questions.

Perhaps not a very realistic model of computation.

It is still a very useful model to study!

Every function is computable!

(it is a “non-uniform” model)

Circuit size

The size of a circuit is the total number of gates
(counting the input variables as gates too) in the circuit.

The size of a circuit family is a function
such that is the size of .

C s(·)
s(n) Cn

The circuit complexity of a language is the size of the
minimal circuit family that decides the language.

(intrinsic complexity with respect to circuit size)

 if there is a circuit family of sizeL 2 SIZE(s(n))
 that decides . LO(s(n))

Maximum circuit size for a function

Theorem:
For every language , A A 2 SIZE(2n).

Proof:
Let correspond to . fA : {0, 1}n ! {0, 1} A

Observation:

fA(x1, x2, . . . , xn) = (x1 ^ fA(1, x2, . . . , xn))

(¬x1 ^ fA(0, x2, . . . , xn))

_

Maximum size for a function
Proof (continued):

fA(1, x2, . . . , xn) fA(0, x2, . . . , xn)

x2 x3 xnx1

^
_

¬
^

…

s(n) 2s(n� 1) + 5 s(1) 3

=) s(n) = O(2n)

Functions with exponential complexity

Theorem:
There is a language whose circuit complexity is
at least .

L
2n/4n

Proof:
Want to show: there is a function f : {0, 1}n ! {0, 1}
that cannot be computed by a circuit of size . 2n/4n<

Observation: # possible functions is 22
n

Claim1: # circuits of size s is 24s log s

Claim2: For ,s 2n/4n 24s log s < 22
n

Then what we wanted to show follows immediately.

Functions with exponential complexity
Proof (continued):

Claim 2 is easy to verify. Proof of Claim 1:
For each circuit of size s,
we create a binary string of length 4s log s

This mapping will be injective, so Claim 1 will follow.

For each gate in the circuit, write down:
- type of the gate
- from which gates the inputs are coming from

(2 log s bits) Total: s(2 + 2 log s) bits

Claim1: # circuits of size s is 24s log s

Claim2: For ,s 2n/4n 24s log s < 22
n

(2 bits)

Number the gates: 1, 2, 3, 4, …, s

Remarks

In fact, it is easy to show that most functions require
exponential size circuits.

A non-constructive argument.

That was due to Claude Shannon (1949).

Claude Shannon
(1916-2001)

Father of Information Theory.

Circuit complexity vs time complexity
Theorem:

If , then . A 2 DTIME(T (n)) A 2 SIZE(T (n)2)

i.e. DTIME(T (n)) ✓ SIZE(T (n)2)

Corollary:
If cannot be computed by polynomial size circuits,
 then .

A
A 62 P

So to show , find a language in
that cannot be computed by polynomial size circuits.

P (PSPACE PSPACE

After 60 years of research,
best lower bound for an explicit function: 5n� peanuts

Current state of affairs:

Advantages of working with circuits

A clean, simple mathematical definition.

Easy to create a hierarchy of problems.

- can restrict the depth (constant, log n, log^2 n, …)
- can allow other gates when the depth is restricted.
- can study monotone circuits.

Summary of
Introduction to Computational Complexity

Summary

Unlike computability, computational complexity depends
on the computational model.

Definition of time complexity of an algorithm.

The CS way of comparing functions.
O(·),⌦(·),⇥(·)

How you represent the input matters.
If the input is a number, imagine it has millions of digits.

Summary

Algorithms can do tricky things!

Definition of the famous complexity class .

Not all decidable problems can be efficiently decided.

Always ask “Can we do better?”

P

Summary

Space complexity.

Circuit complexity.

L ✓ P ✓ PSPACE ✓ EXP

- A nice and clean computational model.
- Related to time complexity.

We don’t know how to prove lower bounds…

