15-251: Great Theoretical Ideas in Computer Science Lecture 10

Graphs: The Basics

Facebook

\# vertices $n \approx 10^{9}$
$\#$ edges $m \approx 10^{12}$

World Wide Web

1998 paper on PageRank

$$
\begin{aligned}
\text { Vertices }= & \text { pages } \quad \text { Edges }=\text { hyperlinks } \\
& (\text { "directed graph") }
\end{aligned}
$$

Street Maps

Zachary Karate Club CLUB

(networkkarate.tumblr.com)

34 vertices (karatekas) 78 edges (friendships)

Graphs from images

These are "planar" graphs; drawable with no crossing edges.

Register allocation problem

A compiler encounters:

$$
\begin{aligned}
\text { temp1 } & :=a+b \\
\text { temp2 } & :=\text {-temp1 } \\
c & :=\text { temp2+a }
\end{aligned}
$$

5 variables; can it be done with 4 registers?
G. Chaitin (IBM, 1980) breakthrough:

Let variables be vertices. Put edge between u and v if they need to be live at same time. The least number of registers needed is the chromatic number of the graph.

Register allocation problem

A compiler encounters: temp1 := a+b
temp2 := -temp1
c := temp2+d
5 variables; can it be done with 4 registers?

Computer Science Life Lesson:

If your problem has a graph, ().
If your problem doesn't have a graph, try to make it have a graph.

Warning:

The remainder of the lecture is, like, 100 definitions.

If you've seen them all before 10 times, play http: //planarity. net on your phone.

Definitions

Simple
Undirected
Graphs

Directed
Graphs

General
Graphs
(AKA annoying graphs)

Definitions

A graph G is a pair (V, E) where:
V is the finite set of vertices/nodes;
E is the set of edges.
Each edge $e \in E$ is a pair $\{u, v\}$,
where $u, v \in V$ are distinct.

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,4\},\{2,4\},\{3,6\},\{4,5\}\}
\end{aligned}
$$

Definitions

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { can be }
$$ drawn like this:

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,4\},\{2,4\},\{3,6\},\{4,5\}\}
\end{aligned}
$$

Notation

n almost always denotes |V|

M almost always denotes |E|

Edge cases

Question:

Can we have a graph with no vertices?

Answer:

Um...... well......

IS THE NULL-GRAPH A POTNTLESS COMCEPT

Frank Harary
and Oxford Dniversity
Ronald C. Read
University of Materloo
ABSTRACT
The graph with no points and no lines is discussed eritically. Arguments
for and against its official admittance as a graph are presented. This is
accompanied by an extensive survey of the 1iterature. Paradoxical properties of the null-graph are noted. No conclusion is reached.

Edge cases

Question:

Can we have a graph with no vertices?

Answer:

It's to convenient to say no.
We'll require $V \neq \varnothing$.

One vertex ($\mathrm{n}=1$) definitely allowed though.
Called the "trivial graph".

More terminology

For $u \in V$ we define $N(u)=\{v:\{u, v\} \in E\}$, the neighborhood of u.
E.g., in the below graph, $N(y)=\{v, w, z\}$,

$$
\begin{aligned}
& N(z)=\{y\}, \\
& N(x)=\varnothing .
\end{aligned}
$$

The degree of u is $\operatorname{deg}(u)=|N(u)|$.
E.g., $\operatorname{deg}(y)=3, \operatorname{deg}(z)=1, \operatorname{deg}(x)=0$.

Theorem:

Let $G=(V, E)$ be a graph. Then $\sum_{u \in V} \operatorname{deg}(u)=2|E|$.

$$
\begin{equation*}
2+2+0+3+1=8 \tag{x}
\end{equation*}
$$

$$
=2 \cdot 4
$$

Remark: Classic "double counting" proof.

More terminology

```
Suppose e = {u,v} \in E is an edge.
```

We say:
u and v are the endpoints of e,
u and v are adjacent,
u and v are incident on e,
u is a neighbor of v,
v is a neighbor of u.

Theorem:

Let $G=(V, E)$ be a graph. Then $\sum_{u \in V} \operatorname{deg}(u)=2|E|$.

$$
2+2+0+3+1=8
$$

$$
=2 \cdot 4
$$

Proof of $\sum_{u \in V} \operatorname{deg}(u)=2|E|$:

Tell each vertex to put a "token" on each edge it's incident to. Vertex u places deg(u) tokens. So one hand,

$$
\text { total number of tokens }=\sum_{u \in V} \operatorname{deg}(u) \text {. }
$$

On the other hand, each edge ends up with exactly 2 tokens, so
total number of tokens $=2|E|$.
Therefore $\sum_{u \in V} \operatorname{deg}(u)=2|E|$.

Question:

In an n-vertex graph, how large can m be?
(That is, what is the max number of edges?)
Answer: $\binom{n}{2}=\frac{n(n-1)}{2}=\frac{1}{2} n^{2}-\frac{1}{2} n=O\left(n^{2}\right)$
E.g.: $n=5, m=\binom{5}{2}=10$.

Called the complete graph on n vertices. Notation: K_{n}

Let's go back to talking about K_{n}.
In K_{n}, every vertex has the same degree.
This is called being a regular graph.
We say G is d-regular if all nodes have degree d.
For example: K_{n} is $(\mathrm{n}-1)$-regular;
the empty graph is 0 -regular.
What about d-regular for other d?

2-regular graphs

2-regular graph is a disjoint collection of cycles.

A bogus "definition"

If $m=O(n)$ we say G is "sparse". If $m=\Omega\left(n^{2}\right)$ we say G is "dense".

This does not actually make sense.
E.g., if $n=100, m=1000$, is it sparse or dense? Or neither?

It would make sense if you had a sequence or family of graphs.

Anyway, it's handy informal terminology.

1-regular graphs

Possible if and only if $|\mathrm{V}|$ is even.
Such a graph is called a perfect matching.

3-regular graphs

There are lots and lots of possibilities.

A little about "directed graphs"

First, they have a "celebrity couple"-style nickname, a la:

"Kimye"
"Brangelina"

A little about "directed graphs"

Now an edge is an ordered pair, e = (u,v).
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where:
$V=\{p, q, r, s, t\}$
$E=\{(p, q),(p, r),(q, r)$,
"Digraph" $(r, s),(s, t),(t, s)\}$

these are
distinct edges

A little about "directed graphs"

Now there's out-degree and in-degree

$$
\begin{aligned}
\operatorname{deg}_{\text {out }}(u) & =|\{v:(u, v) \in E\}| \\
\operatorname{deg}_{\text {in }}(u) & =|\{v:(v, u) \in E\}|
\end{aligned}
$$

E.g.: $\quad \operatorname{deg}_{\text {out }}(p)=2 \quad \operatorname{deg}_{\text {out }}(s)=1$

$$
\operatorname{deg}_{\text {in }}(p)=0 \quad \operatorname{deg}_{\text {in }}(s)=2
$$

Adjacency Matrix

Adjacency matrix A is $n \times n$ array.
For digraphs, put 1 $A[i, j]= \begin{cases}1 & \text { if } i, j \text { are adjacent } \\ 0 & \text { if } i, j \text { not adjacent }\end{cases}$
 iff $i \rightarrow j$ is an edge.
_For general graphs, put \# edges $\mathrm{i} \rightarrow \mathrm{j}$.

Storing graphs on a computer

Two traditional methods:
Adjacency Matrix
Adjacency List

For both, assume $\mathrm{V}=\{1,2, \ldots, \mathrm{n}\}$.

Our example graph:

Adjacency Matrix

Pros:
Extremely simple.
O(1) time lookup for whether edge is present/absent. Can apply linear algebra to graph theory... hmm...

Cons:

Always uses n^{2} space (memory).
Very wasteful for "sparse" graphs ($m \ll n^{2}$).
Takes $\Omega(\mathrm{n})$ time to enumerate neighbors of a vertex.

Adjacency List

A length-n array Adj, where Adj[i] stores a pointer to a list of i's neighbors.

Storing graphs on a computer

Any other possibilities? Sure!

Adjacency matrix and list were good enough for your grandparents.

But you could do something new and fresh. Maybe add in a hash table to your adj. list.

Here's a graph $G=(V, E)$:

$$
\begin{aligned}
V= & \{1,2,3,4,5,6,7\} \\
E= & \{\{1,3\},\{1,7\},\{2,4\},\{2,6\}, \\
& \{3,5\},\{3,7\},\{4,6\},\{5,7\}\}
\end{aligned}
$$

Notice anything peculiar about it?

This graph is not connected.

Adjacency List

Pros:

Space-efficient. Memory usage is... $O(n)+O(m)$ Efficient to run through neighbors of vertex u: O(deg(u)) time.

Cons:

Single edge lookup can be slow:
To check if (u, v) is an edge, may take $\Omega(\operatorname{deg}(u)$) time, which could be $\Omega(\mathrm{n})$ time.

Terminology

A graph $G=(V, E)$ is connected if
$\forall u, v \in V$, v is reachable from u.

Vertex v is reachable from u if there is a path from u to v.

That's correct, but let's say instead:
"if there is a walk from u to v ".

Terminology

A walk in G is a sequence of vertices

$$
v_{0}, v_{1}, v_{2}, \ldots, v_{n} \quad(\text { with } n \geq 0)
$$

such that $\left\{\mathrm{v}_{\mathrm{t}-1}, \mathrm{v}_{\mathrm{t}}\right\} \in \mathrm{E}$ for all $1 \leq \mathrm{t} \leq \mathrm{n}$.

We say it is a walk from v_{0} to v_{n}, and its length is n.

Example:

(p, q, s, r, p, r, s, t) is a walk from \mathbf{p} to \mathbf{t} of length 7.

Terminology

A path in G is a walk with no repeated vertices.

Fact:

There is a walk from u to v
iff there is a path from u to v.
Because you can always "shortcut" any repeated vertices in a walk.

Example:

walk (p, q, s, r, p, r, s, t) "shortcuts"
to path (p, q, s, t).

Terminology

A path in G is a walk with no repeated vertices.

A cycle is a walk (of length at least 3)
from u to u in which the only
repeated vertex is u.

Example:

(p, r, s, q, p) is a cycle of length 4.

Terminology

A walk in G is a sequence of vertices

$$
\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \quad(\text { with } \mathrm{n} \geq 0)
$$

such that $\left\{\mathrm{v}_{\mathrm{t}-1}, \mathrm{v}_{\mathrm{t}}\right\} \in \mathrm{E}$ for all $1 \leq \mathrm{t} \leq \mathrm{n}$.

Question:

Is vertex u reachable from u?

Answer:

Yes.
Walks of length 0 are allowed.

Terminology

A path in G is a walk with no repeated vertices.

If v is reachable from u, we define the distance from \mathbf{u} to \mathbf{v}, $\operatorname{dist(u,v),~}$
to be the length of the shortest path from u to v.

Examples:

$$
\operatorname{dist}(p, r)=1, \operatorname{dist}(p, s)=2,
$$

$$
\operatorname{dist}(p, t)=3, \operatorname{dist}(p, p)=0 .
$$

This 5-vertex graph is connected.

This 11-vertex graph is not connected.
It has 3 connected components:
$\{p, q, r, s, t\},\{u, v\},\{w, x, y, z\}$

A little more about digraphs

In a digraph, walks have to "follow the arrows".

Given this, the reachable/walk/path/cycle stuff is all the same, except......
u reachable from v
\Rightarrow v reachable from u
G is strongly connected iff
$\forall u, v \in V, u$ is reachable from v.

$\mathrm{n}=1$

$$
n=2
$$

$$
\mathrm{n}=3
$$

Done
$\mathrm{m}=0$

$$
m=1
$$

necessary and sufficient

$\mathrm{m}=2$
necessary and sufficient
$\mathrm{n}=1$

$$
\mathrm{n}=2
$$

$\mathrm{n}=3$

Done
$\mathrm{m}=0$

$$
m=1
$$

necessary and sufficient

$\mathrm{m}=2$ necessary and sufficient
$\mathrm{n}=4$

$m=3$
necessary and sufficient
$n-1$ edges are always sufficient
to connect an n-vertex graph

"path graph"
$-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

Lemma:

Let G be a graph with k connected components. Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$. Then G^{\prime} has either k or $k-1$ connected components.

Example G with $\mathrm{k}=3$ components:

Case 1: u, v in different components

Then we go down to $\mathrm{k}-1$ components.

Lemma:

Let G be a graph with k connected components. Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$. Then G^{\prime} has either k or $k-1$ connected components.

Case 1: u,v in different components

No cycle created, since it would have to involve u \& v, but they weren't previously connected.

n-1 edges are also necessary to connect an n-vertex graph

To prove this, we will use a lemma.

Lemma:

Let G be a graph with k connected components. Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$. Then G^{\prime} has either k or $k-1$ connected components.

Lemma:

Let G be a graph with k connected components.
Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$.
Then G ' has either k or $\mathrm{k}-1$ connected components.

Case 2: u,v in same component

Still have k components.

Bonus observation:

Adding $\{u, v\}$ creates a cycle, since u, v were already connected.

Lemma:

Let G be a graph with k connected components. Let G ' be formed by adding an edge between $u, v \in \mathrm{~V}$. Then either:
a cycle was created, and G' has k components; or no cycle was created, and G' has $\mathrm{k}-1$ components.

Lemma: Let G be a graph with k connected components.
Let G ' be formed by adding an edge between $u, v \in \mathrm{~V}$.
Then either: a cycle was created, and G' has k components; or no cycle was created, and G^{\prime} has $\mathrm{k}-1$ components.

Theorem:

A connected n-vertex graph G has $\geq n-1$ edges.
Proof: Imagine adding in G's edges one by one.
Initially, n connected components.
Each edge can decrease \# components by ≤ 1. Have to get down to 1 . Hence $\geq n-1$ edges.

Bonus:
G has exactly $n-1$ edges iff it's acyclic (has no cycles). Such a graph is called a tree.

Tree definitions

Leaf:
Vertex of degree 1.

Tree definitions

Leaf:

Vertex of degree 1.

Internal node:

Vertex of degree > 1 .

Rooted tree:

Tree with any one vertex designated as "root".
Always drawn with root on top,
rest of tree "hanging down" from it.

Trees

Example trees with $\mathrm{n}=9$ vertices.

$0-0-0-0-0-0-0$

Definition/Theorem:
An n-vertex tree is any graph with at least 2 of the following 3 properties:
connected; n-1 edges; acyclic.
It will also automatically have the third.

Tree definitions

Leaf:
Vertex of degree 1.
Internal node:
Vertex of degree > 1 .

Tree definitions

For rooted trees, we use
"family tree" terminology:
parent, child, sibling,
ancestor, descendant, etc.

Rooted tree:

Tree with any one vertex designated as "root".
Always drawn with root on top,
rest of tree "hanging down" from it.

Tree definitions

For rooted trees, we use
"family tree" terminology: parent, child, sibling, ancestor, descendant, etc.

Binary tree: (cf. Lecture 2)
Rooted tree where each node has at most two children.

Max-Cut

Input: $\quad \mathrm{A}$ graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Output: A "2-coloring" of V: each vertex designated yellow or blue.

Motivation for Max-Cut

Say you're producing a TV show with n castaways. You know the social network of friendships.

You need to split them into two tribes.
Naturally, as producer, you want to break up as many friendships as possible, to maximize
drama-lama.

Time for some actual computer science.

Out of all computational problems in computer science, my personal favorite is...

Max-Cut

Max-Cut

Input: $\quad \mathrm{A}$ graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Output: A "2-coloring" of V: each vertex designated yellow or blue.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.

Motivation for Max-Cut

Motivating examples might be more natural if the social network recorded enemyships, rather than friendships.

There's an app for that.

Enemybook

Kevin Matulef
"Enemybook is an antisocial utility that disconnects you with the people around you."

Motivation for Max-Cut

For example, given enemyship statuses for the Zachary Karate Club,

computing Max-Cut might give the best prediction for the schism into two clubs.

A "Local Search" Algorithm

Sartaj Sahni

Teofilo Gonzalez

1976

Observation: In final 2-coloring, each vertex u has at least $\operatorname{deg}(u) / 2$ of its enemyships (edges) cut. (Why?)

Conclusion:

A "Local Search" Algorithm

Given input graph G with n vertices, m edges..

- Start with an arbitrary 2-coloring (say, all blue).
- Loop:
- Check each vertex u to see if switching its color would increase the number of cut edges.
- If such a vertex u is found, switch its color.
- If no such vertex exists, halt.

[^0]
A "Local Search" Algorithm

Given input graph G with n vertices, m edges...

- Start with an arbitrary 2-coloring (say, all blue).
- Loop:
- Check each vertex u to see if switching its color would increase the number of cut edges.
- If such a vertex u is found, switch its color.
- If no such vertex exists, halt.

Question: Why does this algorithm always halt?
Answer: After each loop iteration, \# of cut edges
increases by ≥ 1. Can't go above m.
Corollary: Running time is $\mathrm{O}\left((\mathrm{m}+\mathrm{n})^{2}\right.$) (quadratic).

This algorithm is pretty good. Is it optimal?

This algorithm is pretty good. Is it optimal?

Maybe algorithms gets as far as this. $\frac{m}{2}$ edges cut No single color switch gives any improvement.

This algorithm is pretty good. Is it optimal?

But the optimum 2-color cuts all m edges.

[^0]: Guaranteed to get $\geq \frac{m}{2}$ cut edges. (Exercise.)

