
1

15-251: Great Theoretical Ideas in Computer Science

Graphs: The Basics

Lecture 10

0

1 2

3 4

5

6 7

8 9

0

1 2

3 4

5

6 7

8 9

What

is

a graph?

0

1 2

3 4

5

6 7

8 9

What

n’tisn’t

!a graph?!

What

is

a graph?

Facebook

Vertices = people Edges = friendships

Facebook

vertices n ≈ 109 # edges m ≈ 1012

World Wide Web

Vertices = pages Edges = hyperlinks

(“directed graph”)

1998 paper

on PageRank

2

World Wide Web

1998 paper

on PageRank

Today: Perhaps n ≈ 1012, m ≈ 1013 ?

Street Maps

Vertices = intersections Edges = streets

Zachary Karate Club

34 vertices (karatekas) 78 edges (friendships)

Zachary Karate Club CLUB
(networkkarate.tumblr.com)

Graphs from images

These are “planar” graphs;

drawable with no crossing edges.

Register allocation problem

A compiler encounters: temp1 := a+b

temp2 := −temp1

c := temp2+d

5 variables; can it be done with 4 registers?

G. Chaitin (IBM, 1980) breakthrough:

Let variables be vertices. Put edge between

u and v if they need to be live at same time.

The least number of registers needed is the

chromatic number of the graph.

3

Register allocation problem

A compiler encounters: temp1 := a+b

temp2 := −temp1

c := temp2+d

5 variables; can it be done with 4 registers?

c

temp2

temp1

b

ad

(or something like that)

If your problem has a graph, .

If your problem doesn’t have a graph,

try to make it have a graph.

Computer Science Life Lesson:

Warning:

The remainder of the lecture is,

like, 100 definitions.

If you’ve seen them all before 10 times,

play http://planarity.net on your phone.

Definitions

Graphs

Directed

Graphs

General

Graphs

1
2

3

4

1
2

3

4

1
2

3

4

“parallel edges”

“self-loops”

(AKA annoying graphs)

Undirected

Simple

Definitions

Guitar

Electric

Guitar

Acoustic

Definitions

Graphs

Directed

Graphs

General

Graphs

1
2

3

4

1
2

3

4

1
2

3

4

(AKA annoying graphs)

Undirected

Simple

Why should I change?

He’s the one who sucks!

4

Definitions

A graph G is a pair (V,E) where:

V is the finite set of vertices/nodes;

E is the set of edges.

Each edge e∈E is a pair {u,v},

where u,v∈V are distinct.

Example:

V = {1,2,3,4,5,6}

E = { {1,2}, {1,4}, {2,4}, {3,6}, {4,5} }

Definitions

Example:

V = {1,2,3,4,5,6}

E = { {1,2}, {1,4}, {2,4}, {3,6}, {4,5} }

1
2

4

5

3

6

G = (V,E) can be

drawn like this:

n almost always denotes |V|

m almost always denotes |E|

Notation

Question:

Can we have a graph with no edges (m=0)?

Answer:

Yes! For example,

V = {1,2,3,4,5,6}

E = ∅

1
2

4

5

3

6

Edge cases

Called the “empty graph” with n vertices.

(haha)

Question:

Can we have a graph with no

Answer:

Um…… well……

Edge cases

vertices?

5

Answer:

It’s to convenient to say no.

We’ll require V ≠ ∅.

Edge cases

One vertex (n = 1) definitely allowed though.

Called the “trivial graph”.
1

Question:

Can we have a graph with no vertices?

More terminology

Suppose e = {u,v} ∈ E is an edge.

We say:

u and v are the endpoints of e,

u and v are adjacent,

u and v are incident on e,

u is a neighbor of v,

v is a neighbor of u.

More terminology

v
w

y

z

x

For u ∈ V we define N(u) = {v : {u,v}∈E},

the neighborhood of u.

E.g., in the below graph, N(y) = {v,w,z},

N(z) = {y},

N(x) = ∅.

The degree of u is

deg(u) = |N(u)|.

E.g., deg(y)=3, deg(z) = 1, deg(x) = 0.

Theorem:

Let G = (V,E) be a graph. Then .

v

w

y

z

x

2

2

3

1

0
2+2+0+3+1 = 8

= 2·4

✓

Theorem:

Let G = (V,E) be a graph. Then .

v

w

y

z

x

•

2+2+0+3+1 = 8

= 2·4

✓

•
••

••
•

•

Remark: Classic “double counting” proof.

Proof of :

Tell each vertex to put a “token” on each edge it’s incident to.

Vertex u places deg(u) tokens. So one hand,

total number of tokens = .

On the other hand, each edge ends up with exactly 2 tokens, so

total number of tokens = 2|E|.

Therefore .

6

Question:

In an n-vertex graph, how large can m be?

(That is, what is the max number of edges?)

Answer: = = = O(n2)

1

5 2

4 3

E.g.: n = 5, m = = 10.

Called the complete graph

on n vertices. Notation: Kn

A bogus “definition”

If m = O(n) we say G is “sparse”.

If m = Ω(n2) we say G is “dense”.

This does not actually make sense.

E.g., if n = 100, m = 1000, is it

sparse or dense? Or neither?

It would make sense if you had a

sequence or family of graphs.

Anyway, it’s handy informal terminology.

Let’s go back to talking about Kn.

This is called being a regular graph.

We say G is d-regular if all nodes have degree d.

For example: Kn is (n−1)-regular;

the empty graph is 0-regular.

What about d-regular for other d?

In Kn, every vertex has the same degree.

1-regular graphs

Possible if and only if |V| is even.

Such a graph is called a perfect matching.

1

2

7

5 6

8

3

4

2-regular graphs

1

2

7

5 6

8

2-regular graph is a disjoint collection of cycles.

3

4

Called a 5-cycle

Called a 3-cycle

3-regular graphs

There are lots and lots of possibilities.

0

1 2

3 4

5

6 7

8 9

1

2

3

4

5

6

7

8

7

A little about “directed graphs”

First, they have a “celebrity couple”-style

nickname, a la:

“Kimye” “Brangelina”

A little about “directed graphs”

t

p
q

r

s

“Digraph”

Now an edge is an

ordered pair, e = (u,v).

, whereG = (V,E), where:

V = {p,q,r,s,t}

E = { (p,q), (p,r), (q,r),

(r,s), (s,t), (t,s) }

these are

distinct edges

A little about “directed graphs”

t

p
q

r

s

Now there’s out-degree

and in-degree

degin(u) = |{v : (v,u)∈E}|

degout(u) = |{v : (u,v)∈E}|

E.g.: degout(p) = 2 degout(s) = 1

deg in (p) = 0 deg in (s) = 2

Storing graphs on a computer

Two traditional methods:

Adjacency Matrix

Adjacency List

For both, assume V = {1, 2, …, n}.

Our example graph: 2 3

1

4

Adjacency Matrix

Adjacency matrix A is n×n array.

2 3

1

4

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

A =

For digraphs, put 1

iff i→j is an edge.

For general graphs,

put # edges i→j.

Adjacency Matrix

Pros:

Extremely simple.

O(1) time lookup for whether edge is present/absent.

Can apply linear algebra to graph theory… hmm…

Cons:

Always uses n2 space (memory).

Very wasteful for “sparse” graphs (m ≪ n2).

Takes Ω(n) time to enumerate neighbors of a vertex.

8

Adjacency List

A length-n array Adj, where Adj[i] stores a

pointer to a list of i’s neighbors.

2 3

1

4

Adj =

1

2

3

4

1 2 4 ⊥

2 3 ⊥

1 3 4 ⊥

2 3 ⊥

Adjacency List

Pros:

Space-efficient. Memory usage is…

Efficient to run through neighbors of vertex u:

O(deg(u)) time.

Cons:

Single edge lookup can be slow:

To check if (u,v) is an edge, may take Ω(deg(u))

time, which could be Ω(n) time.

O(n) + O(m)

Storing graphs on a computer

Adjacency matrix and list

were good enough

for your grandparents.

Any other possibilities? Sure!

But you could do something

new and fresh. Maybe add in

a hash table to your adj. list.

Time for more definitions! Yay!

Let’s talk about connectedness.

6

4 2

1

7 3

5

V = {1,2,3,4,5,6,7}

E = { {1,3}, {1,7}, {2,4}, {2,6},

{3,5}, {3,7}, {4,6}, {5,7} }

Here’s a graph G = (V,E):

Notice anything peculiar about it?

This graph is not connected.

A graph G = (V,E) is connected if

Terminology

∀ u,v ∈ V, v is reachable from u.

Vertex v is reachable from u if

there is a path from u to v.

That’s correct, but let’s say instead:

“if there is a walk from u to v”.

p

q

r

s

t

9

A walk in G is a sequence of vertices

v0, v1, v2, … , vn (with n ≥ 0)

such that {vt−1, vt}∈E for all 1 ≤ t ≤ n.

Terminology

p

q

r

s

t

We say it is a walk from v0 to vn,

and its length is n.

Example:

(p, q, s, r, p, r, s, t) is a

walk from p to t of length 7.

A walk in G is a sequence of vertices

v0, v1, v2, … , vn (with n ≥ 0)

such that {vt−1, vt}∈E for all 1 ≤ t ≤ n.

Terminology

p

q

r

s

t

Question:

Is vertex u reachable from u?

Answer:

Yes.

Walks of length 0 are allowed.

A path in G is a walk with no repeated vertices.

Terminology

p

q

r

s

t

Fact:

There is a walk from u to v

iff there is a path from u to v.

Because you can always “shortcut”

any repeated vertices in a walk.

Example:

walk (p, q, s, r, p, r, s, t) “shortcuts”

to path (p, q, s, t).

A path in G is a walk with no repeated vertices.

Terminology

p

q

r

s

t

If v is reachable from u, we define the

distance from u to v, dist(u,v),

to be the length of the shortest path

from u to v.

Examples:

dist(p,r) = 1, dist(p,s) = 2,

dist(p,t) = 3, dist(p,p) = 0.

A path in G is a walk with no repeated vertices.

Terminology

p

q

r

s

t

A cycle is a walk (of length at least 3)

from u to u in which the only

repeated vertex is u.

Example:

(p,r,s,q,p) is a cycle of length 4.

p

q

r

s

t

This 5-vertex graph is connected.

10

p

q

r

s

t

This 11-vertex graph is not connected.

u

v

w

z

x

y

It has 3 connected components:

{p,q,r,s,t}, {u,v}, {w,x,y,z}

Claim:

“is reachable from” is an equivalence relation

Proof:

• u is reachable from u? ✓

• u reachable from v

⇔ v reachable from u? ✓

• u is reachable from v,

v is reachable from w

⇒ u is reachable from w? ✓

Connected components are the equivalence classes.

In a digraph, walks have to “follow the arrows”.

Given this, the reachable/walk/path/cycle stuff

is all the same, except……

u reachable from v

⇒ v reachable from u

G is strongly connected iff

∀u,v∈V, u is reachable from v.

A little more about digraphs

Challenge:

Make an n-vertex graph connected

using as few edges as possible.

n = 1

Done

m = 0

n = 2

m = 1

necessary

and sufficient

n = 3

m = 2

necessary

and sufficient

n = 4

n = 1

Done

m = 0

n = 2

m = 1

necessary

and sufficient

n = 3

m = 2

necessary

and sufficient

n = 4

m = 3

necessary

and sufficient

11

n−1 edges are always sufficient

to connect an n-vertex graph

“star graph”

“path graph”

“something

else”

n−1 edges are also necessary

to connect an n-vertex graph

To prove this, we will use a lemma.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Example G with k=3

components:

Case 1: u,v in different

components
v

u

Then we go down to

k−1 components.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Case 2: u,v in same

component

vu

Still have k components.

Bonus observation:

Adding {u,v} creates a cycle,

since u,v were already connected.

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then G' has either k or k−1 connected components.

Case 1: u,v in different

components

No cycle created, since

it would have to involve

u & v, but they weren’t

previously connected.

v

u

Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then either:

a cycle was created, and G' has k components;

or no cycle was created, and G' has k−1 components.

12

Lemma: Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,v∈V.

Then either: a cycle was created, and G' has k components;

or no cycle was created, and G' has k−1 components.

Theorem:

A connected n-vertex graph G has ≥ n−1 edges.

Proof: Imagine adding in G’s edges one by one.

Initially, n connected components.

Each edge can decrease # components by ≤ 1.

Have to get down to 1. Hence ≥ n−1 edges.

Bonus:

G has exactly n−1 edges iff it’s acyclic (has no cycles).

Such a graph is called a tree.

Trees

Example trees with n = 9 vertices.

Definition/Theorem:

An n-vertex tree is any graph with

at least 2 of the following 3 properties:

connected; n−1 edges; acyclic.

It will also automatically have the third.

Tree definitions

43
5

2

7

1

6

8

9

Leaf:

Vertex of degree 1.

Tree definitions

43
5

2

7

1

6

8

9

Leaf:

Vertex of degree 1.

Internal node:

Vertex of degree > 1.

Tree definitions

43
5

2

7

1

6

8

9

Leaf:

Vertex of degree 1.

Internal node:

Vertex of degree > 1.

Rooted tree:

Tree with any one vertex designated as “root”.

Always drawn with root on top,

rest of tree “hanging down” from it.

Tree definitions

4

3

5

2 7

1 6

8

9

Rooted tree:

Tree with any one vertex designated as “root”.

Always drawn with root on top,

rest of tree “hanging down” from it.

For rooted trees, we use

“family tree” terminology:

parent, child, sibling,

ancestor, descendant, etc.

13

Tree definitions

4

3

5

2 7

1 6

8

9
For rooted trees, we use

“family tree” terminology:

parent, child, sibling,

ancestor, descendant, etc.

Binary tree: (cf. Lecture 2)

Rooted tree where each node

has at most two children.

Time for some actual computer science.

Out of all computational problems in

computer science, my personal favorite is…

Max-Cut

Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

1 2

4 5

3

Max-Cut

Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

Goal: Have as many cut edges as possible.

An edge is cut if its endpoints have

different colors.

1 2

4 5

3

Motivation for Max-Cut

Say you’re producing a TV show with n castaways.

You know the social network of friendships.

You need to split them into two tribes.

Naturally, as producer,

you want to break up

as many friendships

as possible, to

maximize

drama-lama.

Motivation for Max-Cut

Motivating examples might be more natural

if the social network recorded enemyships,

rather than friendships.

There’s an app for that.

Enemybook

“Enemybook is an antisocial utility that

disconnects you with the people around you.”

Kevin Matulef

14

Motivation for Max-Cut

For example, given enemyship statuses for the

Zachary Karate Club,

computing Max-Cut might give the best

prediction for the schism into two clubs.

A “Local Search” Algorithm

Sartaj Sahni Teofilo Gonzalez

1976

A “Local Search” Algorithm

Given input graph G with n vertices, m edges…

• Start with an arbitrary 2-coloring (say, all blue).

• Loop:

• Check each vertex u to see if switching its

color would increase the number of cut edges.

• If such a vertex u is found, switch its color.

• If no such vertex exists, halt.

Question: Why does this algorithm always halt?

Answer: After each loop iteration, # of cut edges

increases by ≥ 1. Can’t go above m.

Corollary: Running time is O((m+n)2) (quadratic).

A “Local Search” Algorithm

Given input graph G with n vertices, m edges…

• Start with an arbitrary 2-coloring (say, all blue).

• Loop:

• Check each vertex u to see if switching its

color would increase the number of cut edges.

• If such a vertex u is found, switch its color.

• If no such vertex exists, halt.

Observation: In final 2-coloring, each vertex u has

at least deg(u)/2 of its enemyships (edges) cut. (Why?)

Conclusion:

Guaranteed to get ≥ cut edges. (Exercise.)

This algorithm is pretty good. Is it optimal?

15

This algorithm is pretty good. Is it optimal?

Maybe algorithms gets as far as this. edges cut

No single color switch gives any improvement.

This algorithm is pretty good. Is it optimal?

But the optimum 2-color cuts all m edges.

So is there a better polynomial-time algorithm?

Stay tuned…

Definitions:

Seriously, there were
about 100 of them.

Theorems:

Sum of degrees = 2|E|.

The Theorem/Definition
of trees.

Max-Cut local search
analysis.

Study Guide

