
February 19th, 2015

15-251
Great Theoretical Ideas in

Computer Science
Graphs Algorithms II:

Stable and Maximum Matchings

Finding internship

Bob

Finding internship

1.
2.
3.
4.

Bob

1. Alice
2. Bob
3. Charlie
4. David

1. Bob
2. David
3. Alice
4. Charlie

.

.

.

Other examples:
medical residents - hospitals
students - colleges

Finding internship

What can go wrong?

Alice

Bob

Charlie

David

Macrosoft

Moogle

Umbrella

KLG

Suppose Alice gets “matched” with Macrosoft.
 Charlie gets “matched” with Umbrella.

But, say, Alice prefers Umbrella over Macrosoft
and Umbrella prefers Alice over Charlie.

Steps we’ll follow

1. Formulate the problem

2. Is there a trivial algorithm?

3. Is there a better algorithm?

4. Analyze the algorithm

Step 1: Formulate the problem

The purpose:

- Get rid of all the distractions

- Identify the crux of the problem

- Get a clean mathematical model that is easy to reason
about.

Formulate the problem mathematically,
and focus on a meaningful simplification.

Bipartite Graphs

X Y

X Y V

is bipartite if: G = (V,E)

- there exists a bipartition and of

- each edge connects a vertex in to a vertex inX Y

not allowed

Given a graph , we could ask, is it bipartite?G = (V,E)

Bipartite Graphs

Given a graph , we could ask, is it bipartite?G = (V,E)

Bipartite Graphs

X Y

Sometimes we write the bipartition explicitly:

G = (X,Y,E)

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

matching

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

matching

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

not a
matching

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

maximum
matching

Maximum matching: a matching with largest number
of edges (among all possible matchings).

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

maximal
matching

Cannot add
more edges.

“Local optimum”

Maximal matching: a matching which cannot contain
any more edges.

Matchings in bipartite graphs

Often, we are interested in find a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

Perfect matching: a matching that covers all vertices.

perfect
matching

a necessary
condition for

perfect matching:
|X| = |Y |

Bipartite Graphs

Great for modeling relations between two classes of
objects.

Examples:

X = machines, Y = jobs

An edge (x, y) means x is capable of doing y.

X = professors, Y = courses

An edge (x, y) means x can teach y.

X = students, Y = internship jobs

An edge (x, y) means x and y are interested in each other.

Back to the internship problem

An instance of the problem can be represented as a
complete bipartite graph

Goal: Find a stable matching.

+ preference list of each node.

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

X Y

Students Companies

a

b

c

d

e

f

g

h

|X| = |Y | = n

Back to the internship problem

What is a stable matching?

X Y

a

b

e

f

(e,f)

(e,f)

(a,b)

(a,b)

1. It has to be a perfect matching.

2. Cannot contain an unstable pair:
A pair of vertices u and v which are not matched to
each other, BUT they prefer each other to their
current partners.

Back to the internship problem

X Y

What is a stable matching?

a

b

e

f

(e,f)

(e,f)

(a,b)

(a,b)

1. It has to be a perfect matching.

2. Cannot contain an unstable pair:
A pair of vertices u and v which are not matched to
each other, BUT they prefer each other to their
current partners.

(a, e) is an unstable pair.

Back to the internship problem

X Y

An instance of the problem can be represented as a
complete bipartite graph

Goal: Find a stable matching.

+ preference list of each node.

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

Is it guaranteed to always exist?

|X| = |Y | = n

Step 2: Is there a trivial algorithm?
X Y

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

Try all possible perfect matchings,
and check if it is stable.

perfect matchings: n! where . n = |X|

Step 3: Can we do better?

The Gale-Shapley Proposal Algorithm (1962)

Nobel Prize in Economics
2012

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

The Gale-Shapley Proposal Algorithm

Cool, but does it work correctly?
- Does it always terminate?

While there is a man who is not matched:

- Let m be such a man

- Let w be the highest ranked woman in m’s list
to whom m has not proposed yet.

- If w is unmatched, or w prefers m over her current
partner:

- Match m and w.
 (The previous match of w is now unmatched.)

- Does it always find a stable matching?
 (Does a stable matching always exist?)

Step 4: Analyze the algorithm

n2

3 things to show:

1. Number of iterations is at most .

2. The algorithm terminates with a perfect matching.

3. The matching has no unstable pairs.

A constructive proof that a stable matching always exists.

n2

Theorem:

The Gale-Shapley proposal algorithm always terminates
with a stable matching after at most iterations.

Step 4: Analyze the algorithm

1. Number of iterations is at most . n2

No man proposes to a woman more than once.

So each man makes at most proposals.n

iterations = # proposals

There are men in total.n

proposals . n2=)
iterations . n2=)

Step 4: Analyze the algorithm

2. The algorithm terminates with a perfect matching.

Suppose not.

This means some man is not matched to any woman.

i.e., the man got rejected by all the woman.

If a woman is engaged, she stays engaged.
All men are engaged.=)

All the women are engaged
when the man proposes to them.
(A women prefers to be engaged than be single.)

Step 4: Analyze the algorithm

2. The algorithm terminates with a perfect matching.

A man is not engaged

All men are engaged.=)

All women must be engaged=)

Contradiction

Step 4: Analyze the algorithm

3. The matching has no unstable pairs.

Unstable pair: A pair of vertices m and w which are not
matched to each other, BUT they prefer each other to
their current partners.

Observations:
 A man can only go down in his preference list.
 A woman can only go up in her preference list.

Step 4: Analyze the algorithm

3. The matching has no unstable pairs.

Consider any pair (m, w)
m

m’

w’

w

Case 1: m never proposed to w

Case 2: m proposed to w

w’ must be higher in the preference list of m than w

Observations:
 A man can only go down in his preference list.
 A woman can only go up in her preference list.

w rejected m w prefers her current partner=)

Further questions

Does the order of how we pick men matter?
Would it lead to different matchings?

Does this algorithm favor men or women or neither?

Answering further questions

w is a valid partner of m if there is some stable matching
in which m and w are matched.

w is the best valid partner of m if w is the highest
ranked valid partner of m.

Theorem:
The Gale-Shapley algorithm always matches m with its
best valid partner.

Answering further questions

Theorem:
The Gale-Shapley algorithm always matches m with its
best valid partner.

best(m) = best valid partner of m

Gale-Shapley returns {(m, best(m)) : m is in X }

Not at all obvious this would be a matching,
let alone a stable matching!

Proof of man optimality

Proof:
Suppose in the G-S algorithm, there is some man not
matched to his best valid partner.

Some man got rejected by his best valid partner.

Some man got rejected by some valid partner.

Consider the first time this happens in the algorithm.
i.e., first time a man m gets rejected by a valid partner w.

m

m’

w (…,m’,…,m,…)

During G-S algorithm:

(right after
m got rejected

by w)

Proof of man optimality

Proof:

Some other stable matching:

m

m’

w (…,m’,…,m,…)

w’

(where m and w are matched)

m

m’

w (…,m’,…,m,…)

During G-S algorithm:

w’(…,w,…,w’,…)

(…,w,…,w’,…)

At this point, m’ could not have been rejected by w’.
(because m is the first men to be rejected by a valid partner.)

unstable pair

Answering further questions

m is a valid partner of w if there is some stable matching
in which m and w are matched.

m is the best valid partner of w if m is the highest
ranked valid partner of w.

Theorem:
The Gale-Shapley algorithm always matches w with its
worst valid partner.

m is the worst valid partner of w if m is the lowest
ranked valid partner of w.

Proof of woman pessimality

Proof:

m w

After G-S algorithm:

Suppose some w is matched with m, but m is not the
worst valid partner of w.

(…,m,…,m’,…)(…,w,…,w’,…)

Some other stable matching:

m

m’

w

w’

(where w is matched with a worse partner m’)

unstable pair

Stable matching variants

The original “finding internship” problem.

(the women can accept more than one proposal)

The original “finding internship” problem with “couples”.

(couples must be assigned together)

Stable roommate problem.

(all participants in one pool)

…

Maximum Matching

Matching problems

X Y

Matching :
A subset of the edges that do not share an endpoint.

Maximum matching:
 A matching with largest number of edges
 (among all possible matchings).

machines jobse.g.:

Matching problems

Can also define a matching in non-bipartite graphs.

It is just a subset of edges that don’t share an endpoint.

Input: A graph .G = (V,E)

Output: A maximum matching in . G

Input: A graph .G = (V,E)

Output: Yes if contains perfect matching. No otherwise. G

(touches every vertex)

The restriction where G is bipartite is already interesting!

Bipartite maximum matching problem

Input: A bipartite graph .

Output: A maximum matching in . G

G = (X,Y,E)

Is there an algorithm to solve this problem?

Try all possible subsets of the edges.
Check if it is a matching.
Keep track of the maximum one found.

Can we do better?

Bipartite maximum matching problem

What if we picked edges greedily?

Bipartite maximum matching problem

What if we picked edges greedily?

Bipartite maximum matching problem

What if we picked edges greedily?

Bipartite maximum matching problem

What if we picked edges greedily?

maximal matching

but not maximum

Is there a way to get out of this local optimum?

Augmenting paths

Let M be some matching.

An augmenting path with respect to M is a path in G
such that:

- the edges in the path alternate between
 being in M and not being in M
- the first and last vertices are not matched by M

1

2

3

4

5

6

7

8

Augmenting path:

4-8-2-5-1-7

Augmenting paths

1

2

3

4

5

6

7

8

Augmenting path:

4-8-2-5-1-7

4 8 2 5 1 7

4 8 2 5 1 7

augmenting path can obtain a bigger matching.=)

Augmenting paths and maximum matchings

augmenting path can obtain a bigger matching.=)

no augmenting path maximum matching.
In fact:

=)

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to it.

Augmenting paths and maximum matchings

Proof:
If there is an augmenting path with respect to M,
we saw that M is not maximum.

Want to show:
If M is not maximum, then there is an augmenting path.

Let M* be the maximum matching. |M*| > |M|

1

2

3

4

5

6

7

8

Let S be the set of edges
contained in M* or M
but not both.

S = (M* M) - (M M*)[\

Augmenting paths and maximum matchings

Proof:
1

2

3

4

5

6

7

8

Let S be the set of edges
contained in M* or M
but not both.

S = (M* M) - (M M*)[\

What does S look like?

(each vertex has degree at most 2)

A vertex is incident to at most one edge in M*
and one edge in M.

So S is a collection of cycles and paths,
and the edges alternate red and blue.

Augmenting paths and maximum matchings

Proof:
1

2

3

4

5

6

7

8

Let S be the set of edges
contained in M* or M
but not both.

S = (M* M) - (M M*)[\

So S is a collection of cycles and paths,
and the edges alternate red and blue.

In S, # red > # blue

Cycles must have even length. So # red = # blue in cycles.
Then there must be a path with # red > # blue.

This is an augmenting path with respect to M.

Algorithm to find maximum matching

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to it.

OK, but how do you find an augmenting path?

Algorithm:

Start with a single edge as your matching M.

Find an augmenting path with respect to M.

Update M according to the augmenting path.

Repeat until there is no augmenting path w.r.t. M:

Algorithm to find maximum matching

OK, but how do you find an augmenting path?

1

2

3

4

5

6

7

8

If an edge is in M

direct it from left to right.

If an edge is not in M

direct it from right to left.

Algorithm to find maximum matching

OK, but how do you find an augmenting path?

1

2

3

4

5

6

7

8

If an edge is in M

direct it from right to left.

If an edge is not in M

direct it from left to right.

There is an augmenting path with respect to M
if and only if

There is a path from an unmatched vertex on the left to
an unmatched vertex on the right.

Exercise

Algorithm to find maximum matching

.

.

.

.

.

.

s

edges to
unmatched

vertices

Do a DFS starting at s.
Stop when you reach an unmatched vertex on the right.

Algorithm to find maximum matching

Algorithm:

Start with a single edge as your matching M.

Find an augmenting path with respect to M.

Update M according to the augmenting path.

Repeat until there is no augmenting path w.r.t. M:

O(m · n) time

Summary

Bipartite graphs and matchings arise very naturally
in many areas.

They are extremely well-studied in math and CS.

- Gale Shapley Proposal algorithm

Finds a stable matching.

- Augmenting path algorithm

Finds a maximum matching.

