
February 24th, 2015

15-251
Great Theoretical Ideas in

Computer Science
NP and NP-completeness I

Toolbox of a computer scientist

1. Basic algorithmic techniques
e.g. greedy algorithms, divide and conquer,
 dynamic programming, linear programming,
 semi-definite programming, etc…

2. Basic data structures
e.g. queues, stacks, hash tables, binary search trees, etc…

3. Identifying and dealing with intractable problems

Toolbox of a computer scientist

1. Basic algorithmic techniques

2. Basic data structures

e.g. greedy algorithms, divide and conquer,
 dynamic programming, linear programming,
 semi-definite programming, etc…

e.g. queues, stacks, hash tables, binary search trees, etc…

3. Identifying and dealing with intractable problems

Some examples

The Knapsack Problem

Output:

Yes, if there is a subset S ✓ {1, 2, . . . , n}

such that and
X

i2S

wi  W
X

i2S

vi � t

Input:
n

vi

items:
- value
- weight wi

capacity W

(non-negative)
(non-negative, integral)
(non-negative, integral)

target value t (non-negative)

Some examples

The Traveling Salesman Problem (TSP)

1

2 4

5
24

Input:

A graph , edge weights G = (V,E) we (non-negative,
integral)and target . t

Output:
Yes, if there is a cycle of cost at most
that visits every vertex exactly once.

t

Yes, if there is a cycle of cost at most
that visits every vertex exactly once.

Some examples

1

2 4

5
24

The Traveling Salesman Problem (TSP)
Input:

A graph , edge weights G = (V,E) we (non-negative,
integral)

Output:

and target . t

t

Yes, if there is a cycle of cost at most
that visits every vertex exactly once.

Some examples

In which order should
you visit the cities so
the total cost is
less than $20,000?

The Traveling Salesman Problem (TSP)
Input:

A graph , edge weights G = (V,E) we (non-negative,
integral)

Output:

and target . t

t

Some examples

Satisfiability Problem (SAT)
Input:

A Boolean propositional formula.

(x1 ^ ¬x2) _ (¬x1 ^ x3) _ (¬x2 ^ ¬x3)e.g.

Output:

Yes if there is an assignment to the variables
that makes the formula True.

Some examples

Theorem Proving Problem
Input:

A FOL formula. A target length .t

Output:

Yes if there is a proof of the formula in
FOL deductive calculus of length at most . t

Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

It would be fantastic if we could directly prove that
these problems cannot be solved in poly-time.

P

After decades of research, no one has been able to come
up with an efficient solution for these problems.

Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

After decades of research, no one has been able to come
up with an efficient solution for these problems.

But we are far from doing this.

And who knows, maybe these problems are in . P

So what can we do???

It would be fantastic if we could directly prove that
these problems cannot be solved in poly-time.

Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

So what can we do???

We can try to gather evidence that these problems
are hard.

These problems are described as NP-hard or NP-complete.
(synonyms for “computationally intractable”)

You have to know what these mean!

In fact, every scientist and engineer should know what
these mean!

And in fact, we will be able to do this!

Goal:

Find evidence that, say TSP, is computationally hard.

Revisiting reductions

A central concept used to compare the “difficulty” of
problems.

will differ based on context

Now we are interested in polynomial time decidability vs
 not polynomial time decidability

Want to define: A  B
 is at least as hard as
 (with respect to polynomial time decidability).

AB

 poly-time decidable poly-time decidable=)B A
B 2 P =) A 2 P

 not poly-time decidable not poly-time decidable=) BA
A /2 P =) B /2 P

Revisiting reductions

x

A(x)

Definition:

y B(y)

(polynomial time reduces to):A B

if it is possible to decide in polynomial time
using an algorithm that decides in polynomial time.

A
B

A P
T B

Revisiting reductions

def b(...):
 # some code that solves the problem B

def a(...):
 # some code that solves the problem A
 # that makes calls to function b when needed

If b efficient (poly time) implies a efficient, then we write

A P
T B

When you want to show ,
you need to come up with an efficient a.

A P
T B

Revisiting reductions

Given a graph and an integer k, does there exist at least
k pairs of vertices connected to each other?

Given a graph and a pair of vertices (s,t),
is s and t connected?

A:

B:

A poly-time reduces to B

Revisiting reductions
A:

B:

A poly-time reduces to B

Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8

Given two sequences of integers, and a number k,
is there a common subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8

The two sides of reductions

1. Expand the landscape of tractable problems.

Whenever you are given a new problem to solve:

- check if it is already a problem you know how to solve
 in disguise.

- check if it can be reduced to a problem you know
 how to solve.

B AA P
T BIf and is tractable, then is tractable.

B 2 P =) A 2 P

The two sides of reductions

2. Expand the landscape of intractable problems.

But we are pretty lousy at showing a problem is
intractable.

Maybe we can still make good use of this…

A P
T BIf and is intractable, then is intractable.BA

A /2 P =) B /2 P

Gathering evidence for intractability

Suppose we want to gather evidence that .

If we can show for many L P
T A L

(including some that we really think should not be in) L P

A /2 P

then that would be good evidence that . A /2 P

Definitions of C-hard and C-complete

 for all

Let be some set of decision problems.
Definition:

C
We say that decision problem is -hard ifC

C P
T A C 2 C

A

 is harder than every problem in . A C

Definition:
We say that decision problem is -complete ifCA
 - is -hardCA
 - A 2 C

A is the hardest problem in . C

 for all

Definitions of C-hard and C-complete

Let be some set of decision problems.
Definition:

C
We say that decision problem is -hard ifC

C P
T A C 2 C

A

Observations:

Suppose is -hard.CA

- If there is a problem in , then .C � P A /2 P

- If , every problem in is in .CA 2 P P

(In a sense, encodes all problems in .)CA

Recall the goal

Goal: Find evidence that, say TSP, is computationally hard.

If is -hard for a really big set , that is some evidence
that is computationally hard.

A C C
A

The bigger the , the better!C

So what is a good choice for
if we want to show TSP is -hard? C

C

Recall the goal

Goal: Find evidence that, say TSP, is computationally hard.

What if we let be the set of all languages?C

Can it be true that TSP is -hard? C

CWhat if we let be the set of all languages decidable
using Brute Force Search (BFS)?

Can it be true that TSP is -hard? C

A complexity class for BFS

How can we identify the problems solvable using BFS?

What would be a reasonable definition?

What is common about the Knapsack Problem, TSP, SAT,
and Theorem Proving Problem?

Seems hard to find a solution.

BUT, quite easy to verify a given solution.

A complexity class for BFS

Seems hard to find a solution.

BUT, quite easy to verify a given solution.

We often call the solution a “proof” for the fact that
the instance is in the corresponding language.

Given a satisfying assignment to a SAT formula,
can easily verify that it indeed satisfies the formula.

Given a cycle that visits every vertex in a graph,
can easily verify it is indeed a cycle that visits every vertex.

Given a proof for a FOL sentence,
can easily verify it is indeed a valid proof.

A complexity class for BFS

Seems hard to find a solution.

BUT, quite easy to verify a given solution.

BFS goes through the solution space one by one to find a
solution.

Easy to distinguish a needle from hay.

But the haystack is exponentially large.

The complexity class NP

Informally:

A decision problem is in if: NP
whenever we have a Yes instance,
there is a simple proof for this fact.

The complexity class NP

Informally:

A decision problem is in if: NP
whenever we have a Yes instance,
there is a simple proof for this fact.

1. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.

The complexity class NP

Formally:

 “ iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”
x 2 A

u

Definition:

A language is in ifA NP

- there is a polynomial time TM
- a polynomial p

such that for all :x

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1

The complexity class NP

Definition:

A language is in ifA NP

Formally:

If , there is some proof that leads to accept.

- there is a polynomial time TM
- a polynomial p

such that for all :x

x 2 A

If , every “proof” leads to reject.
x /2 A

V

V

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1

The complexity class NP

 “ iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”
x 2 A

u

If , there is some proof that leads to accept.
x 2 A

If , every “proof” leads to reject.
x /2 A

V
V

SAT 2 NP

 : a Boolean formulax

u : an assignment to the variables that makes True.x

The complexity class NP

 “ iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”
x 2 A

u

If , there is some proof that leads to accept.
x 2 A

If , every “proof” leads to reject.
x /2 A

V
V

TSP 2 NP

 : a graph with edge weights, and a target x

u : a cycle of cost at most
 that visits each vertex exactly once.

t
t

proof = certificate = solution

The complexity class NP

2 Observations:

 2. This is a pretty BIG class!

1. Every decision problem in can be solved using BFS.NP

If , it has a poly-time decider .A 2 P M

Contains everything in .P

P

NP

 takes as input: V
real input , and empty string as proof x u

 just runs and returns its output.V
M(x)

People expect that contains much more than .PNP

- Go through all possible proofs , and run u
V (x, u)

Coming back to our goal

P

NP
NP

-c
A language in -c represents the
hardest language in .

NP
NP

In fact, if we believe ,

P 6= NP

A 2 NP =) A /2 P-c

Could it be true that one of them is -complete? NP

We wanted to find evidence that the Knapsack problem,
TSP, SAT, Theorem Proving problem are not in .P

Is there any decision problem that is -complete? NP

Coming back to our goal

Is there any decision problem that is -complete? NP

If -c, it is like encodes all problems whose
solutions can be efficiently verifiable.

A 2 NP A

(If we could solve A in poly-time, we could solve every
problem in NP in poly-time.)

Is -completeness a useful definition?NP

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

That is, every problem in NP polynomial time reduces
to SAT.

Karp’s 21 NP-complete problems

1972: “Reducibility Among Combinatorial Problems”

0-1 Integer Programming
Clique
Set Packing
Vertex Cover
Set Covering
Feedback Node Set
Feedback Arc Set
Directed Hamiltonian Cycle
Undirected Hamiltonian Cycle
3SAT Chromatic Number

Partition
Clique Cover
Exact Cover
Hitting Set
Knapsack
Steiner Tree
3-Dimensional Matching
Job Sequencing
Max Cut

SAT-CNF

Today

1979

Thousands of problems are known to be NP-complete.

(including SAT, TSP, Knapsack, Theorem Proving)

Some other examples

Longest Common Subsequence
Given a set of sequences, and a number k,
is there a subsequence of length at least k
that is common to all the given sequences?

Subset Sum
Given a set of integers, and a separate integer k,
is there a subset of the integers that sum to k?

Longest Path
Given a graph and an integer k,
is there a path of length at least k?

Some other examples

Sudoku (arbitrary dimension)

Super Mario Bros

Given a Super Mario Bros level, is it completable?

Tetris
Given a sequence of Tetris pieces, and a number k,
can you clear more than k lines?

And many more…

Amazingly, all of these problems are “equivalent” to
each other.

If and are NP-complete, then A B

A P
T B and B P

T A

How do you prove a problem is NP-complete?

Observation:

You want to show is NP-complete.A

How can you do it?

i.e., is in NP, and for every NP, . A B 2 B P
T A

Suppose you know is NP-hard,

B P
T L

L

i.e., for every NP.B 2

If you can show L P
T A

then is NP-hard too! A

2. Pick your favorite NP-complete problem .

How do you prove a problem is NP-complete?

3 Steps:

You want to show is NP-complete.A

1. Show that is in NP.

L

L P
T A

A

3. Show that .

i.e., given a poly-time algorithm for ,A
come up with a poly-time algorithm for .L

How do you prove a problem is NP-complete?

Cool!

How did Cook-Levin show SAT is NP-complete???

Will have to wait for this…

Good evidence for intractability?

If is -hard,
that seems to be good evidence that .

A NP
A /2 P

(if you believe) P 6= NP

But is ??P 6= NP

The P vs NP Question

What does NP stand for anyway?

Not Polynomial?

None Polynomial?

No Polynomial?

Nurse Practitioner?

It stands for Nondeterministic Polynomial time.

Languages in NP are the languages solvable
in polynomial time by a nondeterministic TM.

DFA SFA (actually called NFA)

DTM NTM

What does NP stand for anyway?

Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET “possibly exponential time”

“provably exponential time”

“previously exponential time”

The P vs NP question

Yes, if you solve it, you get 1 million dollars.

But this understates the importance of the problem!

We are now pretty confident that this is one of the
deepest questions we have ever asked.

The two possible worlds

NP-c

NP-hard

NP

P

P = NP = NP-c

NP-hard

The P vs NP question

To show P != NP:

pick you favorite NP-complete problem,
show that it cannot be solved in polynomial time.

To show P = NP:

pick you favorite NP-complete problem,
show that it can be solved in polynomial time.

P = NP is equivalent to SUDOKU P 2

What do experts think?

Two polls from 2002 and 2012

Number of respondents in 2002: 100
Number of respondents in 2012: 152

What do experts think?

Common arguments you’ll hear:

If P = NP, someone would have found an
efficient algorithm for an NP-complete problem.

Verifying a given solution is quite easy.

Coming up with a solution seems to require “creativity”.

Can creativity be automated?

What do experts think?

Common arguments you’ll hear:

L ✓ P ✓ PSPACE ✓ EXPRecall:

L ✓ P ✓ NP ✓ PSPACE ✓ EXP

We know L 6= PSPACE

We also know P 6= EXP

How to deal with NP-complete problems?

1. Focus on tractable special cases

e.g. Given some graph problem.
 Maybe it is easy for bipartite graphs, or trees.

2. Heuristics

Algorithms that are not guaranteed to be always correct.

3. Try to do better than BFS

4. Approximation algorithms

Summary

Summary
How do you identify intractable problems?
(problems not in)P e.g. SAT, TSP, …

Can’t prove they are intractable.
Can we gather some sort of evidence?

Poly-time reductions. A P
T B

If we can show , for many , L P
T A L

that can be good evidence that . A /2 P

Definitions of -hard, -complete.C C

What is a good choice for ,
if we want to show, say, SAT is -hard?

C
C

Summary
The complexity class

 -hard, -complete

NP

NP NP

Cook-Levin Theorem: SAT is -completeNP

Many natural problems are -completeNP

So is that good evidence that a problem is intractable?

The vs questionNPP

Next Time

How did Cook-Levin show SAT is NP-complete?

And examples of reductions that show other problems
are NP-complete.

