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Toolbox of a computer scientist

1. Basic algorithmic techniques
e.g.  greedy algorithms, divide and conquer, 
      dynamic programming, linear programming,
      semi-definite programming, etc…

2. Basic data structures
e.g.  queues, stacks, hash tables, binary search trees, etc…

3. Identifying and dealing with intractable problems
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Some examples

The Knapsack Problem

Output:

Yes, if there is a subset S ✓ {1, 2, . . . , n}

such that                         and 
X

i2S

wi  W
X

i2S

vi � t

Input:
n

vi

items:
- value 
- weight wi

capacity W

(non-negative)
(non-negative, integral)
(non-negative, integral)

target value t (non-negative)



Some examples

The Traveling Salesman Problem (TSP)

1
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5
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Input:

A graph                   ,  edge weights G = (V,E) we (non-negative, 
integral)and target   . t

Output:
Yes, if there is a cycle of cost at most 
that visits every vertex exactly once.

t



Yes, if there is a cycle of cost at most 
that visits every vertex exactly once.
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Yes, if there is a cycle of cost at most 
that visits every vertex exactly once.

Some examples

In which order should
you visit the cities so 
the total cost is
less than $20,000?

The Traveling Salesman Problem (TSP)
Input:

A graph                   ,  edge weights G = (V,E) we (non-negative, 
integral)

Output:

and target   . t

t



Some examples

Satisfiability Problem (SAT)
Input:

A Boolean propositional formula.

(x1 ^ ¬x2) _ (¬x1 ^ x3) _ (¬x2 ^ ¬x3)e.g.

Output:

Yes if there is an assignment to the variables
that makes the formula True.



Some examples

Theorem Proving Problem
Input:

A FOL formula.  A target length    .t

Output:

Yes if there is a proof of the formula in    
FOL deductive calculus of length at most    . t



Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

It would be fantastic if we could directly prove that 
these problems cannot be solved in poly-time.

P

After decades of research, no one has been able to come 
up with an efficient solution for these problems.



Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

After decades of research, no one has been able to come 
up with an efficient solution for these problems.

But we are far from doing this.

And who knows, maybe these problems are in    . P

So what can we do???

It would be fantastic if we could directly prove that 
these problems cannot be solved in poly-time.



Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

So what can we do???

We can try to gather evidence that these problems 
are hard.

These problems are described as NP-hard or NP-complete.
(synonyms for “computationally intractable”)

You have to know what these mean!

In fact, every scientist and engineer should know what 
these mean!

And in fact, we will be able to do this!



Goal:

Find evidence that, say TSP, is computationally hard.



Revisiting reductions

A central concept used to compare the “difficulty” of 
problems.

will differ based on context

Now we are interested in polynomial time decidability vs
                                  not polynomial time decidability 

Want to define: A  B
     is at least as hard as     
 (with respect to polynomial time decidability).

AB

            poly-time decidable             poly-time decidable=)B A
B 2 P =) A 2 P

    not poly-time decidable            not poly-time decidable=) BA
A /2 P =) B /2 P



Revisiting reductions

x

A(x)

Definition:

y B(y)

(      polynomial time reduces to     ):A B

if it is possible to decide      in polynomial time
using an algorithm that decides      in polynomial time.

A
B

A P
T B



Revisiting reductions

def b(...):
     # some code that solves the problem B

def a(...):
     # some code that solves the problem A
     # that makes calls to function b when needed

If b efficient (poly time) implies a efficient, then we write

A P
T B

When you want to show              , 
you need to come up with an efficient a.

A P
T B



Revisiting reductions

Given a graph and an integer k, does there exist at least 
k pairs of vertices connected to each other?

Given a graph and a pair of vertices (s,t),
is s and t connected?

A:

B:

A poly-time reduces to B



Revisiting reductions
A:

B:

A poly-time reduces to B

Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8

Given two sequences of integers, and a number k,
is there a common subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8



The two sides of reductions

1. Expand the landscape of tractable problems.

Whenever you are given a new problem to solve:

- check if it is already a problem you know how to solve
  in disguise.

- check if it can be reduced to a problem you know 
  how to solve.

B AA P
T BIf                  and     is tractable,  then     is tractable.

B 2 P =) A 2 P



The two sides of reductions

2. Expand the landscape of intractable problems.

But we are pretty lousy at showing a problem is 
intractable.

Maybe we can still make good use of this…

A P
T BIf                  and     is intractable,  then     is intractable.BA

A /2 P =) B /2 P



Gathering evidence for intractability

Suppose we want to gather evidence that           .

If we can show                for many L P
T A L

(including some     that we really think should not be in    )  L P

A /2 P

then that would be good evidence that           . A /2 P



Definitions of C-hard and C-complete

                                  for all 

Let     be some set of decision problems.
Definition:

C
We say that decision problem     is    -hard ifC

C P
T A C 2 C

A

        is harder than every problem in    .  A C

Definition:
We say that decision problem     is    -complete ifCA
  -       is    -hardCA
  -     A 2 C

A        is the hardest problem in    .   C



                                  for all 

Definitions of C-hard and C-complete

Let     be some set of decision problems.
Definition:

C
We say that decision problem     is    -hard ifC

C P
T A C 2 C

A

Observations:

Suppose      is    -hard.CA

- If there is a problem in            ,  then            .C � P A /2 P

- If            ,  every problem in     is in    .CA 2 P P

(In a sense,     encodes all problems in    .)CA



Recall the goal

Goal: Find evidence that, say TSP, is computationally hard.

If      is    -hard for a really big set    , that is some evidence
that     is computationally hard. 

A C C
A

The bigger the    , the better!C

So what is a good choice for    
if we want to show TSP is   -hard? C

C



Recall the goal

Goal: Find evidence that, say TSP, is computationally hard.

What if we let      be the set of all languages?C

Can it be true that TSP is    -hard? C

CWhat if we let      be the set of all languages decidable
using Brute Force Search (BFS)?

Can it be true that TSP is    -hard? C



A complexity class for BFS

How can we identify the problems solvable using BFS?

What would be a reasonable definition?

What is common about the Knapsack Problem, TSP, SAT,
and Theorem Proving Problem?

Seems hard to find a solution.

BUT, quite easy to verify a given solution.



A complexity class for BFS

Seems hard to find a solution.

BUT, quite easy to verify a given solution.

We often call the solution a “proof” for the fact that 
the instance is in the corresponding language.

Given a satisfying assignment to a SAT formula,
can easily verify that it indeed satisfies the formula.

Given a cycle that visits every vertex in a graph,
can easily verify it is indeed a cycle that visits every vertex.

Given a proof for a FOL sentence,
can easily verify it is indeed a valid proof.



A complexity class for BFS

Seems hard to find a solution.

BUT, quite easy to verify a given solution.

BFS goes through the solution space one by one to find a 
solution.

Easy to distinguish a needle from hay.

But the haystack is exponentially large.



The complexity class NP

Informally:

A decision problem is in         if: NP
whenever we have a Yes instance,
there is a simple proof for this fact.



The complexity class NP

Informally:

A decision problem is in         if: NP
whenever we have a Yes instance,
there is a simple proof for this fact.

1. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.



The complexity class NP

Formally:

 “           iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”
x 2 A

u

Definition:

A language      is in        ifA NP

- there is a polynomial time TM
- a polynomial p

such that for all    :x

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1



The complexity class NP

Definition:

A language      is in        ifA NP

Formally:

If           , there is some proof that leads       to accept.

- there is a polynomial time TM
- a polynomial p

such that for all    :x

x 2 A

If           , every “proof” leads       to reject.
x /2 A

V

V

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1



The complexity class NP

 “           iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”
x 2 A

u

If           , there is some proof that leads       to accept.
x 2 A

If           , every “proof” leads       to reject.
x /2 A

V
V

SAT 2 NP

   :  a Boolean formulax

u   :  an assignment to the variables that makes     True.x



The complexity class NP

 “           iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”
x 2 A

u

If           , there is some proof that leads       to accept.
x 2 A

If           , every “proof” leads       to reject.
x /2 A

V
V

TSP 2 NP

   :  a graph with edge weights, and a target   x

u   :  a cycle of cost at most    
     that visits each vertex exactly once.

t
t

proof = certificate = solution



The complexity class NP

2 Observations:

 2. This is a pretty BIG class!

1. Every decision problem in        can be solved using BFS.NP

If            ,  it has a poly-time decider      .A 2 P M

Contains everything in     .P

P

NP

   takes as input: V
real input    ,  and empty string as proof x u

   just runs            and returns its output.V
M(x)

People expect that       contains much more than    .PNP

- Go through all possible proofs    , and run u
V (x, u)



Coming back to our goal

P

NP
NP

-c
A language in      -c  represents the 
hardest language in      .            

NP
NP

In fact, if we believe              ,
          

P 6= NP

A 2 NP =) A /2 P-c

Could it be true that one of them is       -complete? NP

We wanted to find evidence that the Knapsack problem, 
TSP,  SAT,  Theorem Proving problem are not in    .P

Is there any decision problem that is      -complete? NP



Coming back to our goal

Is there any decision problem that is      -complete? NP

If              -c, it is like      encodes all problems whose 
solutions can be efficiently verifiable.

A 2 NP A

(If we could solve A in poly-time, we could solve every 
problem in NP in poly-time.)

Is      -completeness a useful definition?NP



The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

That is, every problem in NP polynomial time reduces 
to SAT.



Karp’s 21 NP-complete problems

1972:  “Reducibility Among Combinatorial Problems”

0-1 Integer Programming
Clique
Set Packing
Vertex Cover
Set Covering
Feedback Node Set
Feedback Arc Set
Directed Hamiltonian Cycle
Undirected Hamiltonian Cycle
3SAT Chromatic Number

Partition
Clique Cover
Exact Cover
Hitting Set
Knapsack
Steiner Tree
3-Dimensional Matching
Job Sequencing
Max Cut

SAT-CNF



Today

1979

Thousands of problems are known to be NP-complete.

(including  SAT,  TSP,  Knapsack, Theorem Proving)



Some other examples

Longest Common Subsequence
Given a set of sequences, and a number k,
is there a subsequence of length at least k 
that is common to all the given sequences?

Subset Sum
Given a set of integers, and a separate integer k,
is there a subset of the integers that sum to k?

Longest Path
Given a graph and an integer k,
is there a path of length at least k?



Some other examples

Sudoku (arbitrary dimension)

Super Mario Bros

Given a Super Mario Bros level, is it completable?

Tetris
Given a sequence of Tetris pieces, and a number k,
can you clear more than k lines?



And many more…

Amazingly,  all of these problems are “equivalent” to 
each other.

If        and       are NP-complete, then A B

A P
T B and B P

T A



How do you prove a problem is NP-complete?

Observation:

You want to show      is NP-complete.A

How can you do it?

i.e.,      is in NP,  and for every         NP,                 .   A B 2 B P
T A

Suppose you know      is NP-hard,

B P
T L

L

i.e.,                  for every         NP.B 2

If you can show L P
T A

then      is NP-hard too! A



2.  Pick your favorite NP-complete problem    . 

How do you prove a problem is NP-complete?

3 Steps:

You want to show      is NP-complete.A

1.  Show that      is in NP.

L

L P
T A

A

3.  Show that               . 

i.e., given a poly-time algorithm for    ,A
come up with a poly-time algorithm for    .L



How do you prove a problem is NP-complete?

Cool!

How did Cook-Levin show SAT is NP-complete???

Will have to wait for this…



Good evidence for intractability?

If       is       -hard,  
that seems to be good evidence that            . 

A NP
A /2 P

(if you believe               ) P 6= NP

But is              ??P 6= NP



The P vs NP Question



What does NP stand for anyway?

Not Polynomial?

None Polynomial?

No Polynomial?

Nurse Practitioner?

It stands for Nondeterministic Polynomial time.

Languages in NP are the languages solvable 
in polynomial time by a nondeterministic TM.

DFA                    SFA (actually called NFA)

DTM                   NTM



What does NP stand for anyway?

Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET “possibly exponential time”

“provably exponential time”

“previously exponential time”



The P vs NP question

Yes, if you solve it,  you get 1 million dollars.

But this understates the importance of the problem!

We are now pretty confident that this is one of the
deepest questions we have ever asked.



The two possible worlds

NP-c

NP-hard

NP

P

P = NP = NP-c

NP-hard



The P vs NP question

To show P != NP:

pick you favorite NP-complete problem,
show that it cannot be solved in polynomial time.

To show P = NP:

pick you favorite NP-complete problem,
show that it can be solved in polynomial time.

P = NP   is equivalent to    SUDOKU     P 2



What do experts think?

Two polls from 2002 and 2012

Number of respondents in 2002:   100
Number of respondents in 2012:   152



What do experts think?

Common arguments you’ll hear:

If P = NP,  someone would have found an 
efficient algorithm for an NP-complete problem.

Verifying a given solution is quite easy.

Coming up with a solution seems to require “creativity”.

Can creativity be automated?



What do experts think?

Common arguments you’ll hear:

L ✓ P ✓ PSPACE ✓ EXPRecall:

L ✓ P ✓ NP ✓ PSPACE ✓ EXP

We know L 6= PSPACE

We also know P 6= EXP



How to deal with NP-complete problems?

1.  Focus on tractable special cases

e.g. Given some graph problem.
      Maybe it is easy for bipartite graphs, or trees.

2.  Heuristics

Algorithms that are not guaranteed to be always correct.

3.  Try to do better than BFS

4.  Approximation algorithms



Summary



Summary
How do you identify intractable problems?
(problems not in    )P e.g.  SAT,  TSP, …

Can’t prove they are intractable. 
Can we gather some sort of evidence?

Poly-time reductions. A P
T B

If we can show               ,  for many     , L P
T A L

that can be good evidence that           . A /2 P

Definitions of    -hard,    -complete.C C

What is a good choice for    , 
if we want to show, say, SAT is   -hard? 

C
C



Summary
The complexity class      

     -hard,        -complete

NP

NP NP

Cook-Levin Theorem:   SAT is      -completeNP

Many natural problems are      -completeNP

So is that good evidence that a problem is intractable?

The     vs       questionNPP



Next Time

How did Cook-Levin show SAT is NP-complete?

And examples of reductions that show other problems
are NP-complete.


