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15-251: Great Theoretical Ideas in Computer Science

Approximation Algorithms

Lecture 15
SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

given propositional formula F,
is it satisfiable?

same, but F is a 3CNF

given G and k… are there k
vertices which touch all edges?

are there k vertices all connected?

is there a vertex 2-coloring with
at least k “cut” edges?

is there a cycle touching each
vertex exactly once?

SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

There is only one idea in this lecture:

Don’t Give Up

Vertex-Cover

Given graph G = (V,E) and number k,

is there a size-k “vertex-cover” for G? 

(S ⊆ V is a “vertex-cover” if it touches all edges.)

G has a vertex-cover of size 3.
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Vertex-Cover

Given graph G = (V,E) and number k,

is there a size-k “vertex-cover” for G? 

(S ⊆ V is a “vertex-cover” if it touches all edges.)

G has no vertex-cover of size 2.

(Because you need ≥ 1 vertex per yellow edge.)

Vertex-Cover

Given graph G = (V,E) and number k,

is there a size-k “vertex-cover” for G? 

(S ⊆ V is a “vertex-cover” if it touches all edges.)

The Vertex-Cover problem is NP-complete. 

∴ assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Don’t Give Up

∴ assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Subexponential-time algorithms:

Brute-force tries all 2n subsets of n vertices.

Maybe there’s an O(1.5n)-time algorithm.

Or O(1.1n) time, or O(2n.1
) time, or…

Could be quite okay if n = 100, say.

As of 2010: there is an O(1.28n)-time algorithm.

Don’t Give Up

∴ assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Special cases:

Solvable in poly-time for… 

tree graphs, 

bipartite graphs,

“series-parallel” graphs…

Perhaps for “graphs encountered in practice”?

Don’t Give Up

∴ assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Approximation algorithms:

Try to find pretty small vertex-covers.

Still want polynomial time, and for all graphs.

Gavril’s Approximation Algorithm

Easy Theorem (from 1976):

There is a polynomial-time algorithm that,

given any graph G = (V,E),

outputs a vertex-cover S ⊆ V such that

|S| ≤ 2|S*|

where S* is the smallest vertex-cover.

“A factor 2-approximation for Vertex-Cover.”
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Let’s recall a similar situation from Lecture 10:

My favorite problem, Max-Cut.

Max-Cut

Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

1 2

4 5

3

Goal:    Have as many cut edges as possible.

An edge is cut if its endpoints have

different colors.

Max-Cut

Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

Goal:    Have as many cut edges as possible.

An edge is cut if its endpoints have

different colors.

1 2

4 5

3

Max-Cut

On one hand:  

Finding the MAX-Cut is NP-hard.

On the other hand:  

Polynomial-time “Local Search” algorithm

guarantees cutting ≥ ½|E| edges.

In particular:

(# cut by Local Search) ≥ ½ (max # cuttable)

“A factor ½-approximation for Max-Cut.”

Max-Cut

By the way:

Goemans and Williamson (1994) 

gave a polynomial-time 

0.87856-approximation

for Max-Cut.  

It is very beautiful, but pretty difficult!

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, is it satisfiable?

Given G and k, are there k
vertices which touch all edges?

Given G and k, are there k vertices 
which are all mutually connected?

Is there a vertex 2-coloring with
at least k “cut” edges?

Is there a cycle touching each
vertex exactly once?

This is for technical convenience.

Usually have natural ‘optimization’ version.
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A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given G, find the smallest S ⊆ V 
touching all edges.

Given G, find the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

This is for technical convenience.

Usually have natural ‘optimization’ version.

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, find the largest number
of clauses satisfiable by a truth assignment.

Given G, find the smallest S ⊆ V 
touching all edges.

Given G, find the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

This is for technical convenience.

Usually have natural ‘optimization’ version.

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.

3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find the largest number
of clauses satisfiable by a truth assignment.

Given G, find the smallest S ⊆ V 
touching all edges.

Given G, find the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

Given G with edge costs, find the cheapest
cycle touching each vertex exactly once. 

This is for technical convenience.

Usually have natural ‘optimization’ version.

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.

This is for technical convenience.

Usually have natural ‘optimization’ version.

Technically, the ‘optimization’ versions can’t

be in NP, since they’re not decision problems.

We often still say they are NP-hard.

This means:  if you could solve them in poly-time,

then you could solve any NP problem in poly-time. 

Let’s not worry about this boring technicality!

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, …

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find

the optimal solution unless P = NP.)

But from the point of view of finding

approximately optimal solutions,

there is an intricate, fascinating, and wide

range of possibilities…

Today:     A case study of

approximation algorithms

1. A somewhat good approximation algorithm

for Vertex-Cover.

2. A pretty good approximation algorithm

for the “k-Coverage Problem”.

3. Some very good approximation algorithms

for TSP.
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Today:     A case study of

approximation algorithms

1. A somewhat good approximation algorithm

for Vertex-Cover.

2. A pretty good approximation algorithm

for the “k-Coverage Problem”.

3. Some very good approximation algorithms

for TSP.

Vertex-Cover

Given graph G = (V,E) try to find the

smallest “vertex-cover” for G.

(S ⊆ V is a “vertex-cover” if it touches all edges.)

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)

S := ∅

while not all edges marked as “covered”

find v∈V touching most unmarked edges

S := S ∪ {v}

mark all edges v touches

GreedyVC example

2 3 4

231 1

✓

✓ ✓ ✓

GreedyVC example

2 2 0

121 0

✓

✓ ✓ ✓

✓

✓

(Break ties arbitrarily.)

GreedyVC example

0 1 0

120 0

✓

✓ ✓ ✓

✓

✓

✓

✓
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GreedyVC example

0 0 0

000 0

✓

✓ ✓ ✓

✓

✓

✓

✓

Done.  Vertex-cover size 3 (optimal) .

GreedyVC analysis

Correctness:  

Running time:  

Solution quality:

✓ Always outputs a valid vertex-cover.

✓ Polynomial time (good enough).

This is the interesting question.

There must be some graph G where it

doesn’t find the smallest vertex-cover.

Because otherwise… P = NP!

A bad graph for GreedyVC

Smallest? 3

A bad graph for GreedyVC

GreedyVC? 4

Smallest? 3 So GreedyVC is not even

a 1.33-approximation.

(Because 1.33 < 4/3.)

A worse graph for GreedyVC

GreedyVC? 21

Smallest? 12 So GreedyVC is not even

a 1.74-approximation.

(Because 1.74 < 21/12.)

Even worse graph for GreedyVC

We know GreedyVC is not a 1.74-approximation.

Well… it’s a good homework problem.

Fact: GreedyVC is not a 2.08-approximation.

Fact: GreedyVC is not a 3.14-approximation.

Fact: GreedyVC is not a 42-approximation.

Fact: GreedyVC is not a  999-approximation.
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Theorem: ∀C, GreedyVC is not a C-approximation.

Greed is Bad (for Vertex-Cover)

In other words:

For any constant C,

there is a graph G such that 

|GreedyVC(G)| > C · |Min-Vertex-Cover(G)|.

GavrilVC(G)

S := ∅

while not all edges marked as “covered”

let {v,w} be any unmarked edge

S := S ∪ {v,w}

mark all edges v,w touch

Gavril to the rescue

!?

GavrilVC example

✓

✓

GavrilVC example

✓

✓

✓

✓

✓

✓

GavrilVC example

✓

✓

✓

✓

✓

✓

✓✓

GavrilVC: 6

Smallest: 3
So GavrilVC is at best

a 2-approximation.

Theorem:  

GavrilVC is a 2-approximation for Vertex-Cover. 

Proof:

Say GavrilVC(G) does T iterations. So its |S| =

Say it picked edges e1, e2, …, eT ∈ E.

Key claim:  {e1, e2, …, eT} is a matching.

Because…

so its endpoints are not among e1, …, ej−1.

So any vertex-cover must have ≥ 1 vertex from each ej.

when ej is picked, it’s unmarked,

2T.



8

Theorem:  

GavrilVC is a 2-approximation for Vertex-Cover. 

Proof:

Say GavrilVC(G) does T iterations. So its |S| =

Say it picked edges e1, e2, …, eT ∈ E.

Key claim:  {e1, e2, …, eT} is a matching.

Because…

so its endpoints are not among e1, …, ej−1.

So any vertex-cover must have ≥ 1 vertex from each ej.

Including the minimum vertex-cover S*, whatever it is.

Thus |S*| ≥ T.

So for Gavril’s final vertex-cover S, 

|S| = 2T ≤ 2|S*|.

when ej is picked, it’s unmarked,

2T.

Today:     A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm

for the “k-Coverage Problem”.

3. Some very good approximation algorithms

for TSP.

Today:     A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm

for the “k-Coverage Problem”.

3. Some very good approximation algorithms

for TSP.

“k-Coverage” problem

“Pokémon-Coverage” problem

Let’s say you have

some Pokémon,

and some trainers,

each having a

subset of Pokémon.

Given k, choose a

team of k trainers

to maximize the #

of distinct Pokémon.

“Pokémon-Coverage” problem

This problem is NP-hard.  

Approximation algorithm?

We could try to be greedy again…

GreedyCoverage()

for i = 1…k

add to the team the trainer bringing in the

most new Pokémon, given the team so far
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Example with k=3:

Optimum:

GreedyCoverage:

27

21

So Greedy is at best

a 77.7%-approximation.

30 Pokémon

6 trainers

Greed is Pretty Good (for k-Coverage)

Theorem:  

GreedyCoverage is a 63%-approximation 

for k-Coverage. 

More precisely,  1−1/e

where e ≈ 2.718281828…

Proof:   (Don’t read if you don’t want to.)

Let P* be the Pokémon covered by the best k trainers.

Define ri = |P*| − # Pokémon covered after i steps of Greedy.

We’ll prove by induction that ri ≤ (1−1/k)i · |P*|.

The base case i=0 is clear, as r0 = |P*|.

For the inductive step, suppose Greedy enters its ith step.

At this point, the number of uncovered Pokémon in P* must be ≥ ri−1.

We know there are some k trainers covering all these Pokémon.

Thus one of these trainers must cover at least ri−1/k of them.

Therefore the trainer chosen in Greedy’s ith step will cover ≥ ri−1/k Pokémon.

Thus ri ≤ ri−1 − ri−1/k = (1−1/k)·ri−1 ≤ (1−1/k)·(1−1/k)i·|P*| by induction.

Thus we have completed the inductive proof that ri ≤ (1−1/k)i · |P*|.

Therefore the Greedy algorithm terminates with rk ≤ (1−1/k)k · |P*|.

Since 1−1/k ≤ e−1/k (Taylor expansion), we get rk ≤ e−1 · |P*|.

Thus Greedy covers at least |P*| − e−1 · |P*| = (1−1/e) · |P*| Pokémon.

This completes the proof that Greedy is a (1−1/e)-approximation algorithm.

Today:     A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

3. Some very good approximation algorithms

for TSP.

Today:     A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

3. Some very good approximation algorithms

for TSP.

TSP

(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP”:

Input:     A graph G=(V,E) with edge costs.

Output:  A “tour”: i.e., a walk that visits each 

vertex at least once, and starts and

ends at the same vertex.

Goal: Minimize total cost of tour.
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s

v

kz

t

h

b

19 5

10

2 3

18 16
3012

4 26

14

TSP example

Cheapest tour:

3

+    5

+    5

+  16

+  26

+    4

+  12

+    2

+    2

= 71

TSP is probably the most

famous NP-complete problem.

It has inspired many things…

Textbooks “Popular” books

Museum exhibits Movies

(LPT: do not watch this movie)
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’60s sitcom-themed household-goods

conglomerate ad/contests
People genuinely want to solve large instances.

Applications in:

• Schoolbus routing

• Moving farm equipment

• Package delivery

• Space interferometer scheduling.

• Circuit board drilling

• Genome sequencing

• …

Basic Approximation Algorithm:

The MST Heuristic

Given G with edge costs…

1. Compute an MST T for G, rooted at any s∈V.

2. Visit the vertices via DFS from s.

s

v

kz

t

h

b

19 5

10

2 3

18 16
3012

4 26

14

MST Heuristic example

Step 1:  MST

Step 2:  DFS

Valid tour?  ✓

Poly-time?  ✓

Cost?             

2 × MST Cost

(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.

Key Claim: Optimal TSP cost ≥MST Cost always.

This implies the Theorem, since

MST Heuristic Cost = 2 × MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.

Take any spanning tree from within these edges.

Its cost is at least the MST Cost.

Therefore the original TSP tour’s cost is ≥ MST Cost.

Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, 

factor 1.5-approximation

algorithm for (Metric) TSP. 

Proof is not too hard.  Ingredients:

• MST Heuristic

• Enjoyable (Eulerian) graphs

• Cheapest Perfect Matching algorithm
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Even better in a special case

In the important special case “Euclidean-TSP”, 

vertices are points in ℝ2,

costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

For Euclidean-TSP, there is a

polynomial-time factor  1.3

approximation algorithm.

Even better in a special case

In the important special case “Euclidean-TSP”, 

vertices are points in ℝ2,

costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

For Euclidean-TSP, there is a

polynomial-time factor

approximation algorithm.

1.1

Even better in a special case

In the important special case “Euclidean-TSP”, 

vertices are points in ℝ2,

costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

For Euclidean-TSP, there is a

polynomial-time factor

approximation algorithm.

1.01

Even better in a special case

In the important special case “Euclidean-TSP”, 

vertices are points in ℝ2,

costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

For Euclidean-TSP, there is a

polynomial-time factor

approximation algorithm.

1.001

Even better in a special case

In the important special case “Euclidean-TSP”, 

vertices are points in ℝ2,

costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

For Euclidean-TSP, there is a

polynomial-time factor

approximation algorithm.

1.0001

Even better in a special case

In the important special case “Euclidean-TSP”, 

vertices are points in ℝ2,

costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

For Euclidean-TSP, there is a

polynomial-time factor

approximation algorithm

1+ϵ

, for any ϵ > 0.

(Running time is like O(n (log n)1/ϵ).)
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Euclidean-TSP:

NP-hard, but not that hard

n > 10,000

is feasible

Today:     A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

3. A 1.5-approximation algorithm for Metric-TSP.

4. A (1+ϵ)-approximation alg. for Euclidean-TSP.

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

3. A 1.5-approximation algorithm for Metric-TSP.

4. A (1+ϵ)-approximation alg. for Euclidean-TSP.

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

3. A 1.5-approximation algorithm for Metric-TSP.

4. A (1+ϵ)-approximation alg. for Euclidean-TSP.

Can we do better?

What more do you want?!

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

3. A 1.5-approximation algorithm for Metric-TSP.

Can we do better?

On one hand:  

No improvement in the last 39 years.

On the other hand: 

Researchers strongly believe we 

can improve the factor of 1.5.

Lots of progress on special cases and

related problems in the last 5 years.

I predict an improvement within next 10 years.

Can we do better?

We cannot do better.  (Unless P=NP.)

1.

2. A 63% (1−1/e) approximation algorithm

for the “k-Coverage Problem”.

Theorem: For any β > 1−1/e, it is NP-hard

to factor β-approximate k-Coverage.

Proved in 1998 by Feige, 

building on many prior works.

Proof length of reduction: ≈ 100 pages.
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Can we do better?

We have no idea if we can do better.

1. A 2-approximation algorithm for Vertex-Cover.

Theorem (Dinur & Safra, 2002, Annals of Math.):

For any β >                             ,

it is NP-hard to β-approximate Vertex-Cover.

Probably my favorite

research paper of

all time.

Approximating Vertex-Cover

Approximation Factor

1 1.36 2

Poly-time (Gavril)NP-hard (Dinur–Safra)

???

Between 1.36 & 2: totally unknown.

Raging controversy.

I’ll tell you about it another day.

Definitions:

Approximation algorithm.

The idea of “greedy”
algorithms.

Algorithms and analysis:

Gavril algorithm for 

Vertex-Cover.

MST Heuristic for TSP.

Study Guide


