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15-251: Great Theoretical Ideas in Computer Science

Gödel’s Incompleteness
Theorems

Lecture 16

Don’t stress, 
Kurt, it’s easy!

Proving the famous

“Gödel Incompleteness Theorems”

is easy if you use computer science.

It’s a Great Application of Theoretical

Computer Science to mathematics.

It’s so easy, let’s kill some time

reviewing older material.

15-251: Great Theoretical Ideas in Computer Science

Formalization of Proof

Lecture 3
• GORM is the math you’ve been doing all your life

• GORM is what we use in the lectures and homeworks

• GORM proofs are written in English (or another human language)

• In GORM, math statements are either true or false

We try to prove the true ones, disprove the false ones

• GORM proofs are valid if they are:

rigorous, logical, convincing, complete, precise

• This depends on the audience & assumed background!

• Ultimately, GORM proofs are valid if they are accepted

by the community of mathematicians

• That’s OK! But we may also want to try to formalize 

(within GORM) what it means to be a valid proof.

GORM: Good Old Regular Mathematics

Formal proofs — 19th century

True rigor developed.

Culminated in the understanding 

that GORM proofs can be formalized,

using tools like First Order Logic, &

Deductive Systems.

Given a vocabulary, some sentences are “tautologies”:

e.g.:                                                       

(∀x(x=a))→(Next(a)=a)

∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b)))

IsCool(c)→(∃x IsCool(x))

i.e.,  “true for all possible interpretations”,

“automatically true, for ‘purely logical’ reasons”.

stuff like ∀x (¬(x=a)→IsSmarter(Father(a),Father(x))).

First Order Logic:
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Gödel’s Completeness Theorem (1929):

“There’s a (computable)

FOL Deductive Calculus for tautologies.”

This “FOL Deductive Calculus” has:

a bunch of axioms (initial objects), 

(all of which are obviously tautologies);

one deduction rule:  from A and A→B, deduce B.

Everything deducible is a tautology.

Gödel showed: every tautology is deducible.

Gödel’s Completeness Theorem (1929):

“There’s a (computable)

FOL Deductive Calculus for tautologies.”

Actually, FOL Deductive Calculus does not have 

finitely many axioms.  It has finitely many

“axiom schema”.  For example…

“if A is any sentence, then A∨¬A is an axiom”

“if IsR is any relation-name and c is any constant-name,

then IsR(c)→(∃x IsR(x)) is an axiom”

Gödel’s Completeness Theorem (1929):

“There’s a (computable)

FOL Deductive Calculus for tautologies.”

“Computability”:

There’s an algorithm (say, a TM) which, 

given a sentence, decides if it is an axiom.

“if A is any sentence, then A∨¬A is an axiom”

“if IsR is any relation-name and c is any constant-name,

then IsR(c)→(∃x IsR(x)) is an axiom”

Upshot of the Completeness Thm.

There is a TM algorithm which, given a

tautological sentence S, finds a

deduction of it in the FOL Deductive Calculus.

Corollary:

for k = 1, 2, 3, …

for all strings x of length k, 

check if x is a deduction of S

Proof:

(Cf. Midterm 1 Practice Problem #11:  L = {S : S is a tautology} is ‘tweetable’.)

1. Think of some universe you want to reason about.

2. Invent an appropriate vocabulary 

(constant, function, relation names).

3. Start with some axioms A1, …, Am which are 

true under the interpretation you have in mind.

4. See what theorems these axioms entail; i.e.,

for which T is (A1 ∧ · · · ∧ Am)→T a tautology.

(By Gödel’s theorem, equivalent to the T which you can    

deduce from the axioms using FOL Deductive Calculus.)

Formalizing GORM proofs Ex. 1:  Arithmetic of ℕ  (Peano axioms)

∀x ¬(Successor(x)=0)
∀x ∀y (Successor(x)=Successor(y))→(x=y)
∀x Plus(x,0)=x
∀x ∀y Plus(x,Successor(y))=Successor(Plus(x,y))
∀x Times(x,0)=0
∀x ∀y Times(x,Successor(y))=Plus(Times(x,y),x)
“Induction:”  For any parameterized formula F(x),

(F(0)∧(∀x F(x)→F(Successor(x)))) → ∀x F(x)

function-names: Successor(x)
Plus(x,y)
Times(x,y)

extra axioms:

constant-name: 0
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Getting ambitious:  All of GORM??

In early 20th c., mathematicians sought a simple

subject that could capture all GORM topics.

They came up with Set Theory.

It’s extremely hacky and kludgy, but you can

express all GORM concepts —

tuples, functions, naturals, integers, graphs, 

rationals, reals, calculus, Turing machines,

— with sets.

Ex. 2:  Set Theory  (ZFC axioms)

∀x ∀y ( (∀z   z∈x ↔ z∈y)  →  x = y )

∀x ∀y ∃z (x∈z ∧ y∈z)

… 7 more (computable) axioms & schemas … 

constant-names, function-names: none

relation-name: IsElementOf(x,y)
[“x∈y”]

extra axioms, catchily known as “ZFC”:

You can formalize essentially all of GORM

using ZFC + FOL Deductive Calculus.

However, it’s super-painful to do by hand.

(Russell & Whitehead page 379:  1+1=2.)

But we have computers now…

Early 20th century conclusion:
Computer-assisted proof

Proof assistant software like 
HOL Light, Mizar, Coq, Isabelle, does two things:  

1. Checks that a proof encoded
in ZFC + FOL Deductive Calculus for

First Order Logic (or typed lambda calculus theory)  is valid.

2.  Helps user code up such proofs.

Developing proof assistants is an 
active area of research, particularly at CMU!

Computer-formalized proofs

Fundamental Theorem of Calculus (Harrison)

Fundamental Theorem of Algebra (Milewski)

Prime Number Theorem (Avigad @ CMU, et al.)

Gӧdel’s Incompleteness Theorem (Shankar)

Jordan Curve Theorem (Hales)

Brouwer Fixed Point Theorem (Harrison)

Four Color Theorem (Gonthier)

Feit-Thompson Theorem (Gonthier)

Kepler Conjecture (Hales++)

Remember:

there is a TM which will print out and certify

a proof of, say, the Four Color Theorem,

coded up in ZFC+FOL Deductive Calculus.

for k = 1, 2, 3, …

for all strings P of length k, 

check if P is a valid deduction of 4CT
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15-251: Great Theoretical Ideas in Computer Science

Turing’s Legacy

Lecture 5

Decidable languages

Definition:

A language L ⊆ Σ* is decidable (or computable)

if there is a Turing Machine M which:

1.  Halts on every input x ∈ Σ*.

2.  Accepts inputs x∈L and rejects inputs x∉L. 

The Halting Problem is Undecidable

Turing’s Theorem:

Let HALTS ⊆ {0,1}* be the language

{ ⟨M,x⟩ : M is a TM which halts on input x }.

Then HALTS is undecidable.

It’s not: “we don’t know how to solve it efficiently”.

It’s not: “we don’t know if it’s a solvable problem”.

We know that it is unsolvable by any algorithm.

Proof

Here is the description of another TM called D,

which uses MHALTS as a subroutine:

Given as input ⟨M⟩, the encoding of a TM M:

D executes MHALTS( ⟨M, ⟨M⟩⟩ ).

If this call accepts, D enters an infinite loop.

If this call rejects,  D halts        (say, it accepts).

D:

Assume MHALTS is a decider TM which decides HALTS.

By definition, D(⟨D⟩) loops if it halts and halts if it loops.

Contradiction. 

15-251: Great Theoretical Ideas in Computer Science

Gödel’s Incompleteness
Theorems

Lecture 16

Don’t stress, 
Kurt, it’s easy!
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Suppose you just really cannot believe we

proved that HALTS is undecidable.

Sample input:

M = “for k = 4, 6, 8, 10, 12, 14, …

check if k is the sum of 2 primes; if not, HALT”

x = ϵ (empty string)

How would you try to write a program H which,

on input ⟨M,x⟩, decides if M(x) eventually halts?

Sample input:

How would you try to write a program H which,

on input ⟨M,x⟩, decides if M(x) eventually halts?

Dunno.  Best idea I can think of is:  
Let H simulate M(x).  If M(x) halts
after 1,000,000,000 steps, output
“it halts”.  If M(x) still hasn’t halted 

after 1,000,000,000 steps, um…

M = “for k = 4, 6, 8, 10, 12, 14, …

check if k is the sum of 2 primes; if not, HALT”

x = ϵ (empty string)

I have a crazy and 
sort of awesome idea 

for how to write H.

Kurt, you 
mathematicians 

always make things 
too complicated.  

Let me explain it.

All 
right, 
fine.

How would you try to write a program H which,

on input ⟨M,x⟩, decides if M(x) eventually halts?

Idea for H:

“ for k = 1, 2, 3, …

for all strings P of length k, 

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually halts’

If so, let H halt and output “yes, M(x) halts”

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually loops’

If so, let H halt and output “no, M(x) loops”    ”

Idea for H:

By my theorem:  this TM H, 
like all algorithms, does not 
decide the Halting Problem.

“ for k = 1, 2, 3, …

for all strings P of length k, 

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually halts’

If so, let H halt and output “yes, M(x) halts”

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually loops’

If so, let H halt and output “no, M(x) loops”    ”

Conclusion:

There is some TM M and some string x such that

ZFC+FOL Deductive Calculus cannot prove either of

‘M(x) eventually halts’ or ‘M(x) eventually loops’.

But M(x) either halts or it loops!

One of these two statements is true!

∴ There is a true mathematical statement

that cannot be proved (in ZFC+FOL Deductive Calculus).



6

This is basically

Gödel’s First Incompleteness Theorem.

“ for k = 1, 2, 3, …

for all strings P of length k, 

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually halts’

If so, let H halt and output “yes, M(x) halts”

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually loops’

If so, let H halt and output “no, M(x) halts”    ”

Conclusion:

There is some TM M and some string x such that

ZFC+FOL Deductive Calculus cannot prove either of

‘M(x) eventually halts’ or ‘M(x) eventually loops’.

Actually, this is not a correct conclusion,

because there’s another possibility:

ZFC+FOL Deductive Calculus might have a proof

that ‘M(x) eventually halts’ even though it loops,

or ‘M(x) eventually loops’ even though it halts.

Conclusion:

There is some TM M and some string x such that

ZFC+FOL Deductive Calculus cannot prove either of

‘M(x) eventually halts’ or ‘M(x) eventually loops’.

Actually, this is not a correct conclusion,

because there’s another possibility:

ZFC+FOL Deductive Calculus might have a proof

that ‘M(x) eventually halts’ even though it loops,

or ‘M(x) eventually loops’ even though it halts.

I.e., ZFC might be unsound: 

it might prove some false statements.

This would kind of upend all of mathematics.

Now, almost everyone believes ZFC is sound.

But theoretically, it’s a possibility.

What we’ve actually proven so far:

ZFC + FOL Deductive Calculus cannot be both

complete

and sound.

Complete:

for every sentence S, either S or ¬S is provable.

Sound:

for every S, if S is provable then S is true.

Question: 

What did this proof use about ZFC?

Answer:        Not too much.

• You can define TM’s and TM computation in it.

• Its axioms/axiom schemas are computable.

What we’ve actually proven so far:

ZFC + FOL Deductive Calculus cannot be both

complete

and sound.
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Any mathematical proof system which is

“sufficiently expressive” (can define TM’s)

and has computable axioms

cannot be both complete and sound.

Gödel’s First Incompleteness Theorem:

Side remark:     

Even Peano Arithmetic is “sufficiently expressive”.  

You can define TM’s and TM computation in it,

though it is a severe pain in the neck.

A smart-aleck’s attempt to circumvent

Gödel’s First Incompleteness Theorem:

“Let’s assume ZFC is sound.  Gödel’s Theorem

says that there’s some true statement S 

which can’t be proved in ZFC.  Let’s just

upgrade ZFC by adding S as an axiom!”

Doesn’t help:

ZFC+S is a sufficiently expressive system

with computable axioms.  So by Gödel’s

Theorem, there’s still some other S/

which is true but can’t be proved.

A smart-aleck’s attempt to circumvent

Gödel’s First Incompleteness Theorem:

“Maybe add in S/ as another axiom?”

Still doesn’t help:

Apply Gödel’s Theorem to ZFC+S+S/,

get yet another true statement S// which

is true but cannot be proved.

“Maybe add in all true statements as axioms?”

Okay fine, but now the set of axioms is not

computable.  So it’s kind of a pointless system.

Any mathematical proof system which is

“sufficiently expressive” (can define TM’s)

and has computable axioms

cannot be both complete and sound.

Gödel’s First Incompleteness Theorem:

Sound:

for every S,

if S is provable

then S is true.

Whoahhhh, dude.

How can you say 
a statement S is 
true if you can’t 

prove it?

Response 1

Don’t get all confused. If I asked you yesterday, 

“Hey, is it true that 1 is the only number 

which appears in Pascal’s Triangle more

than ten times?”,

you wouldn’t be, like, 

“Whoahhhh dude, what does true mean?”

GORM doesn’t suddenly become invalid just 

because you happen to be you’re studying logic.

Don’t get all confused.

Response 2

Just so that nobody gets confused,

I’ll prove an even stronger version

which doesn’t mention “truth”.
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Any mathematical proof system which is

“sufficiently expressive” (can define TM’s)

and has computable axioms

cannot be both complete and consistent.

Gödel’s 1st:  full version
(with strengthening by J. Barkley Rosser)

Complete:

for every sentence S, either S or ¬S is provable.

Consistent:

for every S, you can’t prove both S and ¬S.

Not only will we prove this,

there will be a bonus plot twist at the end!

For simplicity, we fix the mathematical

proof system to be ZFC.

Outline of previous proof:

1. Assume ZFC sound.

2.  Reason about a certain TM.

3. Deduce that ZFC is incomplete.

Outline of upcoming stronger proof:

1. Assume ZFC consistent.

2.  Reason about a certain TM.

3. Deduce that ZFC is incomplete.

We’re going to need a lemma.

Some statements are so simple that,

assuming they’re true,

they definitely do have a proof in ZFC.

Example:  “There are 25 primes less than 100.”

This definitely has a proof:

the brute-force, brain-dead enumeration proof!

Our Brain-Dead Lemma:  

If a particular TM has a particular t-step execution trace, 

then there is a proof of this fact (in ZFC).

Why?  Can always write (in ZFC) proofs that look like:

“Initially M in the starting state/head/tape configuration.

After 1 step, M is in state/head/tape configuration blah.

After 2 steps, M is in state/head/tape configuration blah.

After 3 steps, M is in state/head/tape configuration blah.

… After t steps, M is in state/head/tape configuration blah.

QED.”  

In particular, if M(x) halts, there is a proof of ‘M(x) halts’.

Outline of upcoming proof of the

“truth”-free stronger version of Gödel’s 1st:

1. Assume ZFC consistent.

2.  Reason about a certain TM.

3. Deduce that ZFC is incomplete.
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Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

What can ZFC prove about D(⟨D⟩)?  What can ZFC prove about D(⟨D⟩)?  By consistency,

at most one of ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’.

Perhaps ZFC can prove ‘D(⟨D⟩) loops’?

Then D on input ⟨D⟩ will find this proof, and thus halt.

But if D(⟨D⟩) halts then ZFC can prove ‘D(⟨D⟩) halts’

(by Brain-Dead Lemma).  This contradicts consistency.

Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

What can ZFC prove about D(⟨D⟩)?  What can ZFC prove about D(⟨D⟩)?  By consistency,

at most one of ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’.

Perhaps ZFC can prove ‘D(⟨D⟩) halts’?
Then D(⟨D⟩) will run for some t steps, find this proof, and then 

enter the ‘go right forever’ state. But by Brain-Dead Lemma, 

there’s a proof of this fact (the t+1 step execution trace). 

Thus ZFC can prove ‘D(⟨D⟩) loops’, contradicting consistency.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete.

Incidentally… does D(⟨D⟩) actually halt or loop?

It loops. It does not find a proof of either statement.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete.

It loops. It does not find a proof of either statement.

Wait a minute.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete.

Wait a minute. We just showed that D(⟨D⟩) loops.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘D(⟨D⟩) loops’.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. Did we just find a

contradiction in mathematics?
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Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete.

Wait a minute. We just showed that D(⟨D⟩) loops.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘D(⟨D⟩) loops’.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete.

Wait a minute. We just showed that D(⟨D⟩) loops.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’.

The only way to avoid a contradiction:

ZFC cannot prove ‘ZFC consistent’

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

Assume ZFC   (or any “sufficiently expressive” proof system)

is consistent.  Then not only is it incomplete,

here’s a true statement it cannot prove:

“ZFC is consistent”.

Gödel’s Second Incompleteness Theorem
(proved independently by von Neumann)

Assuming ZFC is consistent, here’s

another statement which 

cannot be proved or disproved in ZFC:

There is a set A with |ℕ| < |A| < |ℝ|.

Paul Cohen  (1963)

None. 

You will not be tested

on this topic.

Study Guide


